Edge Computing

Which solution is best for your Connected Device- Edge or Cloud Computing_

Which Solution is Best for Your Connected Device – Edge or Cloud Computing?

If you have adopted IoT and are developing an IoT-connected device, you may wish to do some valuable computation to resolve the important issues that have been hindering growth. You might be desiring to install sensors in remote locations, create a device that can do data analytics to watch a renewable energy source, or develop health-related devices that can detect the early signs of diseases.

While creating the IoT-enabled device or IoT solution, at some point, you might get into a dilemma where you have to choose between edge or cloud computation. But what would be best for your device? Where should your device do the valuable computations in the cloud or at the edge?

Selecting between computing on edge or cloud can be an impacting decision, like it can influence a device’s efficiency or cost. Therefore, everyone does great research and thinks twice to avoid the cost of making the wrong decision and then the money spent correcting it.

What is Cloud Computing?

Cloud- It is a collection of servers accessed over the internet. Some renowned cloud providers are Microsoft Azure, Amazon Web Services, and Google Cloud. 

These servers offer on-demand computing resources for data processing and storage purposes. You can easily say that cloud is a centralized platform for storing your files and programs, and you can easily connect any device to the cloud to access the data. Some of the cloud-based services are Dropbox or Google Drive etc. 

Cloud computing is the process of doing computation in the cloud. These computations include data analysis and visualization, machine learning, and computer vision.

What is Edge Computing?

Edge is described as the “edge” of the network that includes devices at entry or exit points of the cloud, but it is not a part of the cloud. For instance, a server in a data center is part of the cloud; however, smartphones and routers that connect to that server are part of the edge. 

Edge computing can be defined as the process of performing computations on edge. In this, the processing is completed closer or at the location where data is collected or acted. 

One example of an edge computing process is object detection attached to an autonomous vehicle. The vehicle processes the data from its sensors and utilizes the result to avoid obstacles. In this process, the data is processed locally rather than sent to the cloud.

What are the points to be considered?

Before opting between edge and cloud computing, a few key questions must be considered.

Quality of Your Device’s Network

Conducting computation on the cloud can be beneficial if you have high bandwidth, low latency, and a sturdy connection to the internet, as you’ll have to send your data back and forth between cloud servers and your devices. If you have to use your device, for example, in an office or home with a steady internet connection, this back and forth can be done seamlessly. In most cases, if computation is conducted on edge, it won’t be affected by the bad or lost internet connection in a distant place. The processing can continue as it is not performed in the cloud. You would never want your vehicle’s objection detection to be failed while driving on the road. It is one of the reasons why autonomous vehicles perform computations like object detection on edge.

How Swift and How Often Does Your Data Need to be Processed?

Edge computing can be best suited in cases where customers demand response times from devices prompt than waiting for it in a decent network connection, such as monitoring components of the device.

The latency of the travel time between the cloud and the device can be minimized or eliminated. It means data can be processed immediately. It implies that if data processing is quick, one can achieve real-time responses from the devices. Cloud computation is also useful when device use is unsteady. For example, smart home devices running computation in the cloud allows sharing of the same computing resources between multiple customers. This decrease costs by restraining the need to provide the device with upgraded hardware to run the data processing.

What Part of Your Data is Crucial to You?

Computing on edge is helpful if you are only concerned about the result of your data after it has been processed. One can only send only important things for long-term storage in the cloud, which may cut down the expense of data storage and processing in the cloud. Suppose you are developing a traffic surveillance device that needs to inform about the congestion situation on the road. You could pre-process the videos on edge- instead of running hours of raw video in the cloud-one can send images or clips of the traffic only when it is present.

Do you know Your Devices’ Power and Size Limitations?

If you think your device will be limited in size and power, provided it has a strong network connection, sending the computing work to be done on the cloud will permit your device to remain small and low-power. For example, Amazon Alexa and Google Home capture the audio and send it to the cloud for processing, letting complex computations run on the audio as it can not run on the small computers inside the device themselves.

Data Processing Model Your Intellectual Property?

If you are creating a device for costumer and the methods you are adopting to process data are part of Intellectual Property, you must rethink the plan to protect it. Placing your IP on your device without a proper security plan can make your device vulnerable to hacks. If you are unaware of resources to secure your IP on edge, it is best to opt for the cloud, which already has security measures.

Final Reasons for Choosing Between Edge and Cloud Computing

Hence, we can conclude that one must consider a few things when choosing between computing on edge or the cloud. In complex issues, you might find the combination of both very beneficial by leaving some parts of processing on the cloud and rest on the edge.

How can Edge Computing Change the Outlook of Manufacturing Industry?

IoT, cloud, AI, ML and Edge have been quite familiar terms for technology lovers. There has been a wrong idea or approach that Edge and Cloud are mutually independent. Though they may operate in different ways; leveraging one does not prevent the utilization of the other. In fact, they powerfully complement each other.

Edge Computing in Manufacturing

With the growth and penetration of the Internet of Things in different sectors, the edge computing framework is also findings its way in several sectors. Today, the most promising edge computing use cases are present in the manufacturing industry as it welcomes new technologies, and these advanced technologies effectively improve performance as well as productivity.

IoT is already providing its best for the optimal result in the manufacturing industry; manufacturers are looking for some platform to boost the responsiveness of their production systems. To accomplish this, companies are adopting smart manufacturing with edge computing as its leading enabler.

Smart manufacturing indicates a futuristic factory where equipment can make autonomous decisions based on operations going on the factory floor.

The new technology allows businesses to integrate all steps of the manufacturing process like design, manufacturing, supply chain, and operations. This provides better flexibility and reactivity at competitive markets. But no doubt, this whole vision requires a combination of related technologies like IoT, AI, ML and Edge computing.

One of the critical reason for gathering analytics at the edge of the network is that it enables us to analyze and execute on real-time data without bandwidth costs that come with sending data offsite for analysis.
We all are well-aware that manufacturing is time-sensitive in terms of avoiding the production of out-of-spec components, equipment downtime, worker injury, or death.

In fact, for more complex, longer-term tasks, data can be transferred to the cloud and coupled with other structured and unstructured forms of data. Thus, this supports that the application of these two different computing frameworks is not mutually exclusive but its a symbiotic relationship leveraging the benefits provided by each.

Why businesses need Edge for Manufacturing?

In the manufacturing sector, the purpose of edge computing is to process and analyze data near a machine that require prompt action in a time-sensitive manner. It demands a quick decision right away without any delay. In traditional IoT platform set up, data produced by a device is collected through an IoT device is sent back to the central network server (cloud).

In the cloud, all the collected data is processed in a centralized location, usually in a data centre. This implies that all the devices which need access to this data or use applications associated with it should be connected to the cloud. Thus everything is centralized, and the cloud is easy to secure and control even if it allows for reliable remote access to data. Well, data processing is completed in the cloud; it can be accessed through IoT platforms in several ways, i.e. via real-time visualization, diagnostic analytics, reporting to support better decision making based on real data.

Now, the question which triggers is that, if everything is quite favourable, then why do we need edge computing. The main problem is that the whole process takes time, and the situation turns complicated when there is a need to take prompt decision based on data.

In the traditional process, the data travels the distance from the edge device back to the cloud, and a slight delay can be critical for taking a specific decision like stopping a machine tool from avoiding breaking. In fact, these IoT connected machines produce a massive amount of data and all the data travelling back and forth between edge and cloud disrupts the communication bandwidth.

The only way to achieve real-time decision making is to adopt edge computing. Edge enabled machines to collect and process data in real-time at the edge of the machine that allows them to respond promptly and effectively.

Edge Use Cases in Manufacturing:

Let’s now check the practical reasons to add edge computing as a necessary thing in manufacturing. There are many business benefits to ensure that all networks are correctly connected to the cloud while providing on-time delivery of powerful computing resources at the edge.

1) Updated equipment uptime:

The adoption of edge computing in manufacturing predicts failure in a subsystem, component or impact of running in a degraded state in real-time. It regularly refines as more data is analyzed and is used to boost operational purposes and maintenance schedule.

2) Decreased sustenance costs:

Better analysis of data for required maintenance means that maintenance can be completed on first visits by providing mechanics detailed guidance about the cause of the problem, required action, what part requires extra attention which ultimately deduces repair cost.

3) Lower spare parts inventory:

Edge analytics models are business-friendly; they can be tailored as per the need of an individual device or system. This implies reading sensors directly associated with specific components/subsystems.

Thus, the edge model describes how the system should be optimally configured to accomplish the business goal, making spare parts inventory more efficient at a minimum cost.

4) Critical failure prevention:

By collecting, analyzing and monitoring data related to components, edge analytics detect a cause for future failure before it affects actualize. This enables early problem detection and prevention.

5) Condition-based monitoring:

The convergence of I.T. and O.T. has allowed manufacturers to access machine data to know the condition of their equipment on the factory floor; either it is new or legacy equipment.

6) New business models:

This is an essential point because edge analytics helps in shaping new business models to catch opportunities. Let’s check an example; edge analytics can enhance just-in-time parts management systems using self-monitoring analysis to predict machine component failure and provides parts replacement notification throughout the value chain. This affirms for a needed maintenance schedule to reduce downtime and parts inventory and ensures an efficient model.

In the CNC machine tool, in-cycle stoppages to the tool are edge decision, whereas end-of-cycles can be a cloud decision. The reason behind this is that in-cycle stoppages require a very low, near-zero, lag time whereas end-of-cycle stoppages have a more lenient lag time. Thus in the former scenario, the machine would have to leverage edge analytics when in-cycle to adapt and shut down the machine automatically to avoid potential costly downtime and maintenance.

Edge and cloud computing

As we already know that IIoT aims to apply the latest analytics to large quantities of machine data to reduce unplanned downtime, reduction in the overall cost of machine maintenance and potentially utilizing the machine learning capabilities. The cloud has been responsible for making this kind of massive data acquisition, transfer, and analysis.

So, if data speed is high and connectivity should be stable and then adopting edge solution is the best option. Therefore it is clear that edge computing will not replace cloud computing but it will complement each other for the optimal result. Thus, integration of edge computing with cloud computing capabilities can enhance efficiency and maximize the productivity of the business.