IoT

How IoT Boosts the Micro Mobility Market

How IoT Boosts the Micro Mobility Market?

The Internet of Things is no new thing in the tech market. Just look around, and you’ll find that most of the gadgets and comfort offering solutions are connected to IoT. One of the most popular and known solutions is your virtual assistant,” Alexa.” The way that device handles other internet-connected devices in our homes is incalculable. But limiting the character and usefulness to just these things would be unfair. IoT is also immensely used in logistics, manufacturing, industrial automation, and many others. Not just this, IoT is also being used in the micro-mobility sector.

Any idea about micro-mobility?

The word micro-mobility directs to lightweight transportation for individuals. It shields different transportation options that weigh less than 500kg (1200 lbs). 

Some examples are electric scooters, bicycles, e-bikes, segways, electric skateboards, etc. Micro-mobility is very different from vehicles that are used for long distances. It focuses on short distances and generally for less than five miles. There are considerable advantages to the micro-mobility market, which is the reason behind the huge investment made by tech giants. In 2020 investment in the micro-mobility market was $800 million. This scenario rocketed after the lockdown restrictions were removed. The micro-mobility brands drew around $2.9 billion in 2021.

Advantages of the Micro-mobility Market: 

Let us know three specific benefits of the micro-mobility market that support these high investments:

1: Convenience

One of the most popular and justified benefits is convenience. Transportation options can help customers reach their destination early and with comfort.

2: No Parking Issues:

Parking is one of the major issues in big cities, but micro-mobility can solve this problem. You will never again face parking issues by using micro-mobility transportation choices like segways and hoverboards.

3: Cost-Effective:

As micro-mobility involves ride-sharing, it will automatically become cost-effective; you can rent without requiring any license for hoverboards or e-bikes.

Challenges Faced by the Micro Mobility Sector

The idea of micro-mobility appears appealing, but some challenges hinder the growth of businesses. However, there is zero to be upset about as long as IoT exists, as it has the potential to advance the micro-mobility market.

Data Sharing:

Suppose your own a firm that has 100 ebikes throughout the city. People take your ebikes but pay less attention to the charging levels, and why would they? They are your service bikes, and it’s your responsibility to take care of them. Well, not just this, there are many other issues like ending the ride midway, navigation issues, leaving the vehicle anywhere, and overriding the ebike that can cause damage and revenue loss.

Therefore, there is a need for a solution to collect all the necessary data about the vehicle from time to time. With IoT-connected devices like highly sensitive sensors, one can quickly get all the data related to the vehicle for analysis and make informative decisions. Moreover, adding IoT sensors will also make it manageable for you to transfer data with the traffic authorities to watch vehicle activity in a good way.

Riding Behavior:

It is pretty noticeable to see people riding aggressively on the road. This can be inspired because of different reasons like road rage or time-saving. However, no reason justifies the purpose as it can distract or put other’s life at risk. With IoT sensors installed on the vehicles, businesses can check the vehicle status and warn the rider by sending messages.

For instance, if a person is riding at high speed or cutting the lane often, sensors can record the data and share it with the related authorities for further action. This can protect vehicles from damage and save companies from getting banned due to abnormal riding behavior.

Safety:

Whether a car or a scooter, safety remains the top priority for micro-mobility service provider companies. It is essential to integrate features that protect the riders. These added features are not just limited to safety but also allow businesses to meet government requirements to secure their business.

Theft and Vandalism:

A micro-mobility company’s worst loss is when a vehicle is damaged or lost. Therefore, it is necessary to install proper security measures to prevent this from happening, and yes, IoT can help with this. By implanting a few IoT sensors, companies can stop stealing ebikes. Additionally, these sensors can also be connected to other systems to initiate warning messages.

If it is a genuine user, they can use their phone to get an OTP and use the ebike. Further, the vehicle can have environment-mapping sensors to prevent vandalism.

Scaling Service:

IoT can help in business scaling, but the critical challenge with IoT is that one needs to modify the complete system to upscale instead of a single one. The most feasible option is to get the most suitable IoT service providers. A single service provider will promise smooth and seamless scaling as the operator would have knowledge of your business operations.

Compliance:

Compliance with government standards and norms can hinder growth as they may change and be difficult to follow. However, if state-of-the-art IoT solutions back you, they can become more accessible. IoT sensors can be employed to keep riders stay within speed limits. It can guarantee that vehicle is parked at the right spot. In fact, smart sensors can also guide the riders to the nearest charging station. These criteria also guarantee that riders do the right thing and that government norms are obeyed.

IoT and Micro-mobility

IoT can support the upheaving micro-mobility market, but the only condition is that this will demand colossal investment. Once an investment is made, all other systems are managed, and only timely maintenance and upgrade is left. Investment in IoT for the micro-mobility sector promises a better future and benefits, and various tech giants like Uber and many others are forwarding toward it. This shows that micro-mobility holds a great scope in the coming years. It not just brings transportation at ease but also promises its contribution towards the environment by reducing the dependency on crude oils. The integration of micro-mobility with IoT makes it safe and futuristic.

Energy Harvesting and IIoT- Sustainability for the IIoT

Energy Harvesting and IIoT: Sustainability for the Industrial IoT

The world is encountering tremendous economic and ecological changes along with challenges. The futuristic technologies are all set to transform the outlook of Internet of Things (IoT). Today energy supply to millions of communicating devices is a key issue. 

On a large scale, renewable energies have become a major source of energy generation. Fields embracing solar cells that generate energy using sunlight or wind turbines dominate the landscape. This renewable energy for energy generation is also embraced on a small scale. This entire concept is called “energy harvesting.” 

Small energy converters harvest energy from light, movement, or temperature differences. These harvested energies are enough to power a wireless sensor and transmit data using radio. 

Energy harvesting for radio-based products that are already part of mass production includes four different sources:

  • Motion â€“ the press on a switch, moving machine parts, the rotary motion of a handle.
  • Light– the sunlight coming inside a room.
  • Temperature differences â€“ existing between a heat source like a boiler, radiator, or pipes and the environment and variation between day and night.
  • Electromagnetic field â€“ a contactless coil in a cage clamp around a cable controls the meter and calculates the line current.

For each source, different energy converters with different power parameters are present. The energy generation type and the corresponding power yield determine the possible sensor applications.

Enhanced Sustainability:

With the introduction of energy harvesting technology, radio sensors are sustainable as they don’t require cabling or battery power. They are environment friendly as well as cut expenditure.

Replacing a single battery typically costs around $300 US dollars in an industrial environment. Though changing the battery does not consume much time, traveling to the site, locating the sensor, testing the device, and documenting the process increases the labor cost. It is believed that batteries have a good service life, but in reality, companies are often engaged in changing them within one or two years to avoid early failures.

Today, resource-saving and environmental protection are the top priority. The rising cost of copper, the presence of harmful components, and battery safety are some serious issues. Wireless energy harvesting sensors are the best solution that considers both the financial aspect and environmental protection.

In Process for The Industry:

Sensors play a key role in industrial production. They can be used for quality and process monitoring or condition-based maintenance. A wide range of applications is developing in the direction of an industrial Internet of Things (IIoT) with the increasing usage of wireless sensors. Integrating energy-saving radio with local energy converters,battery-free and maintenance-free sensors can be installed directly on moving parts or in hermetically-sealed environments. For instance, it can be implanted to know the position of moving parts, power consumption, temperature of moving parts, liquids, or gases.

Sensors in Quality Control:

Quality monitoring manages the entire production process and ensures the desired properties of the end product based on different parameters.

For this purpose, environmental factors like temperature, humidity, and air quality or process factors like position or temperature are monitored.

Automated monitoring systems require data generated by sensors; for this purpose, sensors must fit seamlessly into existing production processes. Additionally, they must not need special training or generate follow-up costs in the ongoing operation. Therefore the integration of self-powered and maintenance-free sensors provides benefits.

Condition-based Maintenance with Battery-free Sensors:

Besides products, machines also need proper monitoring to ensure a seamless production process. These are prone to high wear, so it would be best to identify problems as soon as possible and take appropriate actions to maintain continuous quality assurance and protection against production downtime.

A primary problem with maintenance planning is the calculation of the intervals between each maintenance cycle. Normally, the interval between two maintenance dates must be as short as possible to detect deviations before any mishappening occurs. Still, each maintenance involves high costs for personnel and idle machines.

It is often possible to derive valuable information by closely examining a few simple parameters. For instance, a temperature rise can indicate higher friction, thus resulting into wear. Wireless temperature sensors can be installed for measurement processes. Humidity sensors monitor water leakage to prevent water damage. Temperature and humidity sensors also inform about air conditions and guarantee good air quality. That is why wireless energy harvesting sensors are best for various industrial applications. They are low maintenance, flexible, and within budget to install.

That is why wireless energy harvesting sensors are ideal for various industrial applications. They are maintenance-free, flexible, and inexpensive to install – outstanding features for assuring high-quality standards and greater sustainability in the Industry 4.0 environment.

IoT in the Factory Building:

IoT allows significantly efficient, adaptable, and individualized production in manufacturing. Using sensors networked with a smart IoT platform, it is now possible to develop a digital twin, i.e., an exact virtual image of a machine throughout its entire life cycle. Digitalization is becoming a part of buildings and will revolutionize them by providing automated service processes in facility management, higher energy savings, and better individual well-being for users. One important thing for factory buildings and industrial processes is battery-free wireless sensors.

Which solution is best for your Connected Device- Edge or Cloud Computing_

Which Solution is Best for Your Connected Device – Edge or Cloud Computing?

If you have adopted IoT and are developing an IoT-connected device, you may wish to do some valuable computation to resolve the important issues that have been hindering growth. You might be desiring to install sensors in remote locations, create a device that can do data analytics to watch a renewable energy source, or develop health-related devices that can detect the early signs of diseases.

While creating the IoT-enabled device or IoT solution, at some point, you might get into a dilemma where you have to choose between edge or cloud computation. But what would be best for your device? Where should your device do the valuable computations in the cloud or at the edge?

Selecting between computing on edge or cloud can be an impacting decision, like it can influence a device’s efficiency or cost. Therefore, everyone does great research and thinks twice to avoid the cost of making the wrong decision and then the money spent correcting it.

What is Cloud Computing?

Cloud- It is a collection of servers accessed over the internet. Some renowned cloud providers are Microsoft Azure, Amazon Web Services, and Google Cloud. 

These servers offer on-demand computing resources for data processing and storage purposes. You can easily say that cloud is a centralized platform for storing your files and programs, and you can easily connect any device to the cloud to access the data. Some of the cloud-based services are Dropbox or Google Drive etc. 

Cloud computing is the process of doing computation in the cloud. These computations include data analysis and visualization, machine learning, and computer vision.

What is Edge Computing?

Edge is described as the “edge” of the network that includes devices at entry or exit points of the cloud, but it is not a part of the cloud. For instance, a server in a data center is part of the cloud; however, smartphones and routers that connect to that server are part of the edge. 

Edge computing can be defined as the process of performing computations on edge. In this, the processing is completed closer or at the location where data is collected or acted. 

One example of an edge computing process is object detection attached to an autonomous vehicle. The vehicle processes the data from its sensors and utilizes the result to avoid obstacles. In this process, the data is processed locally rather than sent to the cloud.

What are the points to be considered?

Before opting between edge and cloud computing, a few key questions must be considered.

Quality of Your Device’s Network

Conducting computation on the cloud can be beneficial if you have high bandwidth, low latency, and a sturdy connection to the internet, as you’ll have to send your data back and forth between cloud servers and your devices. If you have to use your device, for example, in an office or home with a steady internet connection, this back and forth can be done seamlessly. In most cases, if computation is conducted on edge, it won’t be affected by the bad or lost internet connection in a distant place. The processing can continue as it is not performed in the cloud. You would never want your vehicle’s objection detection to be failed while driving on the road. It is one of the reasons why autonomous vehicles perform computations like object detection on edge.

How Swift and How Often Does Your Data Need to be Processed?

Edge computing can be best suited in cases where customers demand response times from devices prompt than waiting for it in a decent network connection, such as monitoring components of the device.

The latency of the travel time between the cloud and the device can be minimized or eliminated. It means data can be processed immediately. It implies that if data processing is quick, one can achieve real-time responses from the devices. Cloud computation is also useful when device use is unsteady. For example, smart home devices running computation in the cloud allows sharing of the same computing resources between multiple customers. This decrease costs by restraining the need to provide the device with upgraded hardware to run the data processing.

What Part of Your Data is Crucial to You?

Computing on edge is helpful if you are only concerned about the result of your data after it has been processed. One can only send only important things for long-term storage in the cloud, which may cut down the expense of data storage and processing in the cloud. Suppose you are developing a traffic surveillance device that needs to inform about the congestion situation on the road. You could pre-process the videos on edge- instead of running hours of raw video in the cloud-one can send images or clips of the traffic only when it is present.

Do you know Your Devices’ Power and Size Limitations?

If you think your device will be limited in size and power, provided it has a strong network connection, sending the computing work to be done on the cloud will permit your device to remain small and low-power. For example, Amazon Alexa and Google Home capture the audio and send it to the cloud for processing, letting complex computations run on the audio as it can not run on the small computers inside the device themselves.

Data Processing Model Your Intellectual Property?

If you are creating a device for costumer and the methods you are adopting to process data are part of Intellectual Property, you must rethink the plan to protect it. Placing your IP on your device without a proper security plan can make your device vulnerable to hacks. If you are unaware of resources to secure your IP on edge, it is best to opt for the cloud, which already has security measures.

Final Reasons for Choosing Between Edge and Cloud Computing

Hence, we can conclude that one must consider a few things when choosing between computing on edge or the cloud. In complex issues, you might find the combination of both very beneficial by leaving some parts of processing on the cloud and rest on the edge.

Skills and Apps Needed for IoT Mobile App Developers

What are Skills and Apps Needed for IoT Mobile App Development?

Nowadays, it is quite apparent that most of the Internet of Things that is IoT solutions or services are dependent on mobile applications. If we look around, we’ll find that either for industrial or consumer or commercial use cases, mobile applications are important user interfaces to interact, configure and control connected devices or digital services in an IoT system.

Many traditional mobile application development companies share that they are ready to embrace IoT but add that creating IoT applications requires much effort and expertise.

Suppose a traditional app development includes IoT as just one of their mobile capabilities. In that case, it should be considered a warning flag because IoT requires knowledge and expertise, which comes with focusing on IoT over a long time.

What are Important Mobile App Skills for IoT Developers?

Bluetooth Low Energy:

Bluetooth Low Energy enables smartphones to connect directly to IoT devices like sensors, smart appliances, and others. This allows mobile apps to perform works like collecting data from the devices or controlling or configuring the behavior, provision network credentials and updating the device’s software, and many other things.

This BLE is based on the same radio technology as traditional Bluetooth but consumes less power. This feature makes BLE the best for battery-powered IoT applications that do not send or receive a large amount of data. BLE provides support for modern smartphones. It is especially useful in providing network credentials, like sharing wifi SSIDs and passwords to an IoT device. The important point is to do this securely, mandating know-how beyond the basics.

Besides this, working with BLE demands knowing the communication protocols and unique behaviors of the IoT devices. This implies knowing how to troubleshoot the problems and debug issues. Other than this, it also demands experience working with the embedded microcontroller systems that power most devices. The traditional mobile app firms often do not get this type of experience. Pertinent details of the nuances of BLE in different mobile application frameworks like React Native, iOS, and Android environment is also important. Every framework or environment works differently.

Zero-Configuration Networking:

Zero-configuration or Zeroconf is another way smartphones can detect and interact with nearby devices. This system is less used than BLE for this purpose but is often employed for communicating with devices connected to the smartphone’s local wifi network. There are different protocols available that permit the mobile app to discover devices present in the network without needing any special network configuration. Therefore, these protocols are altogether known as Zero-Configuration Networking. These protocols consist of MultiCast DNS (MDNS) and Apple Bonjour.

Smartphones transfer different messages on the network to detect specific device types. The devices supporting the protocol will react with their service name and IP address. This allows the smartphone to develop a direct connection with the device. It is important to have skills and experience with networking and embedded devices for implementing Zeroconf networking.

IoT Cloud Service Integration:

Most of the IoT mobile apps integrate with IoT cloud services. This integration to digital services operating in the cloud allows users to communicate with the devices even when they are not in the range. It also allows users to get useful insights from IoT system data. 

Cloud service providers offer many software solutions for IoT systems that can do things like route messages, process events, index devices, and aggregate data. Mobile apps interact with these services. 

Often, mobile apps for IoT communicate with custom cloud APIs to streamline the interaction between the cloud services and mobile applications. Having experience with REST API and HTTPS is important, and for IoT applications, knowing MQTT and GraphQL. 

Executing good security protection is crucial when connecting to cloud services. To establish this, it needs expertise in methods for authenticating user accounts and setting up access protocols. The entire system ensures that the right users and systems access the right resources, not others. Establishing good security is not a small task and demands precise knowledge of the IoT system and its implementations. Therefore, mobile app developers holding loud experience, specifically IoT-oriented cloud services and patterns, are highly useful for developing great mobile apps for IoT. Holding a good connection with multiple cloud service providers and their capabilities and subtleties add a lot of worth. This also helps select the most optimal services and their providers for specific purposes.

Interfacing with IoT Devices:

IoT system connects the physical devices using networks to digital services and user interfaces. To perform the functions, physical devices have computing capabilities embedded inside them. These small compute consist of external interfaces to get sensor measurements, drive the display, store data, etc. We already discussed that mobile apps often connect to IoT devices over BLE, but the data shared over BLE varies by device type. The way data is collected and sent over BLE depends on the firmware operating in the device. The data available could be in any format, including binary. To exploit this data and debug any issues when they come up, it is important to know decoding, encoding, serialization, and bitwise operations.

Knowing how the IoT device works is important to understand the data needs. This may need reading datasheets and specification documents and reviewing the embedded firmware. Having information about embedded systems mobile makes this process seamless and more efficient.

Security:

IoT systems run on networks and manage important and private data. Therefore, they become the target of attacks from cyber criminals, security researchers, and others. Hence, IoT systems should have good security measures to safeguard the products and brands. 

Authentication of users and devices is an important part. Mobile apps should ensure that users trying to log in are valid and even detect invalid users. Depending on the account, the user should have unique permissions and data access policies. Along with this, mobile apps also need to ensure that any device a user attempt to connect to is authentic and has not been tempered. This is only possible using cryptographically signed software and digital certificates. The data shared between devices and mobile apps should be encrypted. Mobile apps play an important role in updating the firmware of the specific connected devices they are developed to support. This requires securely downloading firmware files, verifying them, and transferring them over the device. To create such systems, it is important to have end-to-end security knowledge. Experience with data access policies and Over-the-Air firmware updates with cryptographically signed firmware is also important.

Cross Platform Development:

Well, there is no need to put effort twice and write two apps when you can have one? Earlier, there was a need to develop two separate applications for Android and iOS.

However, today there are cross-platform development frameworks that serve both. This implies that a single development project can offer mobile applications for both Android and iOS. It has been found that cross-platform development frameworks like React Native and Flutter can provide excellent results in minimum time. These frameworks permit developers to write code in a single language and render applications in native code. The native code varies between Android versus iOS. This means there is no difference in the performance. The final mobile apps perform well and provide the look and feel that Android or iOS users expect. These frameworks have been employed in thousands of web applications and mobile applications. Using a common framework for web and mobile applications adds many advantages to the consistency of user experience.

Mobile App Architecture for IoT:

Mobile apps for IoT should look great and operate flawlessly. The best people to develop the user interfaces must necessarily be the developers with a good grip on core functionality.

Suppose a company delivers the core IoT capabilities for an app inside a bundle of software that partner companies or customers can use within the mobile application. This enables them to focus on developing a seamless user experience without considering the complexities of the IoT features underneath. Your developer should pack the core IoT capabilities into mobile software development kits that can summarize all the IoT complexity into a compilation of software that reveals clear APIs to other mobile app developers.

These SDKs, i.e., software development kits, have APIs for cloud connectivity, device data access, account management, etc. This allows mobile developers to have less IoT complexities experience and access to the IoT APIs to prioritize the application’s user-facing features.

Summary

These are a few reasons advocating Mobile Apps for IoT are unique and require unique skills to develop. These consist of IoT-specific mobile app development features like BLE and the cross-domain experience like cloud and embedded.

If you wish to add great IoT experiences for customers, collaborate with a company with a forte in IoT development and implementation. Connecting with an experienced mobile app development company can improve your business and provide a greater user experience. IoT is the next-gen technology with the only objective of simplifying the existing complex system. It also ensures that customers don’t struggle while using apps or services, and on the other hand, it saves time and cost for the service providers.

How will IoT Build a Bright World with Connected Devices

How will IoT Build a Bright World with Connected Devices?

Internet of Things is now no new word for the tech world. Studies show that the number of connected devices will reach more than 75 billion by 2025, implying that there will be possibly nine connected devices for every human on earth.

The pace at which IoT technology is striking every area of our lives is impressive, but how it has transformed our day-to-day work is beyond imagination.

But what is IoT?

In simple words, it is the practice of connecting different physical assets through the internet, providing control and measurement access from the remote area while saving users money and time. Today one can set the temperature of the air conditioner while on the way home, brew coffee and efficiently manage the use of lights in the home. Products like Amazon’s Alexa and Apple’s Siri can interact and provide information as required.

Let us know how various industries are embracing the presence of the Internet of Things and the impact of this latest technology.

IoT in the manufacturing sector:

The impact of Industrial IoT technology is already visible in the output of the manufacturing industry, especially in measuring energy and asset efficiency throughout the production line.

IoT technology has provided an effective way to connect and modernize legacy assets. Using connective sensors, businesses can accumulate critical production data and use cloud software to turn this data into useful insights to know about the efficiency of their manufacturing process. But what kind of assets? It can be anything used within the manufacturing process, from its HVAC or CNC machines to products like refrigerators or lighting rings, etc.

IoT can assist by providing a clearer picture of the working of assets individually and collectively, chartering better ways for monitoring, automation, and predictive maintenance. For instance, Industrial IoT in action has enabled us to gain insight into energy consumption and the health condition of the asset. This technology even allows us to schedule maintenance by informing us about the future condition of the asset.

Employing and integrating IoT in the existing process reduces costly downtime, improves assets, and reduces energy costs.

IoT in the retail sector:

Retail sectors are already using IoT in different innovative ways. One of the key areas is tracking energy consumption not at one store but all the stores present in the entire region or at the national level.

The IoT system can also be used to know which stores are using high energy in lighting or heating; in-store sensors allow us to track energy usage at a more granular level.

Other than this, IoT is also used to optimize store experiences. It is now possible to know the interest area of the shoppers, where they are spending most of the time. This helps retailers improve their stores’ layout to reduce congestion, increase stay time and boost sales. We can say that IoT technology and its different uses are building the ‘high streets of the future.

IoT in the construction sector:

Internet of Things is also contributing to making the construction sector smarter. Smart buildings are one of the most loved concepts possible by IoT. Using IoT and integrated sensors to know the air quality of the site or the surrounding area, such as parks and schools, is one of the key usages.

IoT in construction areas allows construction managers to accurately assess the real-time effect of their work on air quality. IoT in construction also ensures the safety of construction workers and nearby people.

IoT in the agriculture Sector:

The increasing population shows that we will need more food production in the coming year. UN has also estimated that we will need to produce 70% more food to meet the global demand by 2050. Internet of Things will help this sector overcome the looming food shortage challenge by reducing food wastage and increasing yield.

Supervising and tracking workers, machine efficiency, crop and livestock health, and predicting weather are some of the ways through which IoT promises to boost productivity with minimum wastage. Employment of agriculture drones and smart agriculture sensors are already helping agriculture workers by providing real-time production data. Besides this, sensors to track important atmospheric aspects like light, humidity, temperature, air quality, and soil aspects like soil moisture, nutrition, etc., contribute to better yield. This has automated the tasks which involved manual and human interference. Thus, saving labor costs and time as well.

Another way through which IoT is helping agriculture farmers is by providing predictive analytics through better quality data. Using data, farmers can estimate the yield and make better storage plans to keep the produce after harvesting.

IoT in smart cities:

Well, IoT in urban areas has been very influential. People are enjoying the leverages provided by IoT like smart houses, smart street lights, or smart bottles. IoT has occupied an important place in the planning and management of cities. Many countries are using IoT for waste management, traffic control, and public transport systems.

Using IoT, it is now possible to know the number of people in transit at a particular time and opt for a better route to avoid congestion. In cities where flooding is a serious concern, IoT can be used to track the real-time water level in the river. The flood defense system starts when the water level increases and helps mitigate the risk.

We’re on the way to a smart connected world:

IoT has successfully infiltered in major sectors contributing to the economy’s growth. Today, if we look around, we’ll observe that everything is getting smart and automated. All thanks go to IoT for making life more hassle-free and productive. However, some areas are still untouched by the magic of IoT, but it is predicted that it will be covered soon in the coming years. It is estimated that global expenditure on IoT will be around $1,100 billion (€1060.02 billion) in 2023, almost double 2018 $646 billion (€622.52 billion).

This shows that IoT will continue to reform the industries making them more profit-oriented without compromising quality. Hence, we can conclude that high-quality data can help make anything prompt, cheap, and more efficient with less waste.

How will IoT Make Building Smart and Greener

How will IoT Make Building Smart and Greener?

Smart building technology is becoming a new fashion, fuelled by a global need for better sustainability, reduced waste, and optimal use of resources.

Smart buildings are accessorized with technological advancements of the latest technology, i.e., the Internet of Things, to manage resources, assets, and services effectively, boosting building operations, energy consumption and resource management, and overall resident experience.

Today, buildings are responsible for around 38 percent of global CO2 emissions and 40 percent of U.S. energy consumption; therefore, remodeling buildings’ energy consumption and sustainability are vital to meeting global climate goals.

To adapt this remodeling has already been made clear by U.S. President Biden’s administration, who informed the Buildings Performance Standards Coalition in January. It will be a first-of-its-kind partnership between 33 states and local governments working hard to deliver cleaner, healthier, and more energy-efficient buildings.

The process of optimizing energy consumption in the building sector is a gigantic undertaking; it can begin at the smallest level, i.e., from the tiny chips that power the IoT.

Smart buildings integrate IoT technology into many areas- from digitizing people’s flow and space usage to reconstructing water supply networks. One of the biggest prospects for smart buildings is revolutionizing energy consumption, beginning with smart energy distribution systems and smart HVAC equipment.

Smart Energy Distribution Systems:

Traditional energy distribution systems are positioned in a unidirectional fashion in which energy is expected to flow from generators into loads. 

Usually, power plants generate energy and collect it in the urban centers of these systems.

The introduction and utilization of renewable energy sources like solar and wind have changed the picture of the energy distribution as the energy distribution system has to permit omnidirectional energy flow. A building that consumed energy could now integrate rooftop solar panels to produce and return excess energy into the grid.

Smart energy allocation systems authorize this omnidirectional energy flow and facilitate the integration of renewable distributed energies to collect energy back into the power grid. This whole system reduces energy consumption by enhancing the system’s efficiency and even uncloses a distributed energy generation model. Buildings are becoming energy producers and giving up their earlier character that is consuming energy, ultimately shifting towards green energy.

Advanced sensors and wireless IoT technologies are laying the foundation for smart energy grid transformation, where smart buildings play a pivotal role in fostering a greener, more connected power grid to shape a more sustainable future.

Smart HVAC Systems:

Smart HVAC systems are exciting evolution in smart buildings, which provides energy efficiency, air quality, and resident comfort. With the hit of the COVID-19 pandemic, vendors are looking at a shortened HVAC upgrade cycle. Dealers and distributors are integrating their HVAC systems with new and smart technologies. Today, when everything is shaping into a smart version, building residents are now expecting granular control of HVAC settings in each room and area of their building. In this situation, IoT is a savior as it adds a new level to the comfort experience inside the buildings.

Motorized vents and dampers integrated with wireless connectivity to phones and tablets allow residents to set the temperature and the CO2, humidity, and air quality. Building managers can also benefit from IoT connectivity to know the room occupancy, reduce energy usage, and optimize energy use throughout the premises.

Monitoring Building Health:

Monitoring building health is another important aspect of smart building growth areas. More environmental sensors are being added to buildings beyond traditional temperature and humidity. These sensors control smart dampers for better airflow and outdoor air exchange, manage connected equipment for predictive maintenance to avoid equipment failure, flow meters for real-time leak detection, gas sensors to detect air particles, and many other things.

We are already familiar with connected fire and smoke detection sensors, but with the addition of the latest technology, we can witness more wireless connectivity with long-range wireless and Bluetooth to develop an installer interface.

All three major applications, i.e., energy management, fire safety, and building health monitoring add more connectivity and digital capability.

The Importance of Reliability and Cybersecurity:

Well, aside from the great benefits offered by smart building, there are some challenges faced by smart building to be dealt with with skilled engineering.

The first challenge is technological: wireless networks of such complex systems should be reliable and stable. Though wireless mesh network technology is highly adept, vendors and manufacturers are required to ensure the reliability of their products to estimate the true potential of wireless networks in building environments.

Integrating wireless networks makes buildings vulnerable to cyber attacks. Silicon vendors and product manufacturers have stepped up their cybersecurity game to combat such threats. Uncompromised efforts and constant focus on security while developing and distributing smart solutions will be highly helpful in transforming the building sector.

A Smarter, Greener Future:

The best part about smart buildings is that they are not limited to just brand new structures; these buildings can be retrofitted with smart technology as well. Implementing wireless connectivity in existing systems allows for smooth adoption and speeds up the adoption of wireless communications in buildings.

The initiation of both public and private sectors to improve energy use in the building sector signifies that the coming years will be the era of smart building adoption. Today, when it has become important to reduce CO2 emissions in all sectors and maximize energy efficiency and consumption, the employment of the latest technology and the use of IoT in buildings can charter the way to sustainability and improve the quality of life for individuals and group level.

Role of IoT in Electric Vehicle Monitoring & Management

Today we are witnessing the temperature rise, and one of the major reasons behind this is air pollution. The emission of global house gases is worsening the situation, and its continuity might leave the earth unfit for humans in the coming years.

Vehicles are one of the major contributors to air pollution; therefore, it has become a major issue to look after. Today, people and the government are looking for ways to handle this issue. One of the best ways to control air pollution is by replacing fuel-based vehicles with electronic vehicles. Electric vehicles (EVs) are a new and environment-friendly innovation in this direction.

Electronic vehicles are hi-tech machines that collect an immense amount of data to deliver optimum performance. The performance parameters incorporate monitoring speed, mileage, acceleration, battery management, fault alert, charging, and predictive maintenance systems. Therefore IoT plays a crucial role in the monitoring of electric vehicles.

What is the role of IoT in Electric Vehicle Management?

Let’s know each aspect of an IoT integrated Electric vehicle management system and how they help obtain the optimal performance of electric vehicles.

Battery Management System:

The primary function of the Battery Management System is to watch and control the battery’s functioning. This implies monitoring the charging and discharging cycle to ensure battery health and minimize the risk of battery damage by assuring that optimized energy is provided to run the vehicle.

The monitoring circuit in Battery Management System (BMS) monitors the key parameters of the battery, that is, current, voltage, and temperature during charging and discharging conditions. It assesses parameters like power, State of Health (SoH), and State of Charge (SoC) and assures good health based on the calculation. Internet of Things exhibits a vital role in monitoring and controlling as it allows remote data logging facility for battery parameters, conditions, etc. Most EV manufacturers use high-quality Li-ion battery packs as they have a longer life and exceptionally high energy density.

However, there are some drawbacks as well. In situations when battery malfunction happens, the onboard sensor data acquired using IoT can aid in managing the issues. Then, these can operate through AI-based models for performance estimation. Tests can be executed on some Li-ions to evaluate the patterns of partial and full charging and discharging. Models are marked using the data gathered from each step and are integrated with Artificial Intelligence before deploying on a server. The EV sends important sensor data to the server, delivering insights on the next course of action and performance. We can conclude that the server checks the condition of the Electronic Vehicle.

Safety and Smart Driving:

The adoption of Iot also allows real-time monitoring of the vehicles and their parts. It helps in preventive maintenance provided by the technology, which is found to be more reliable by the users. IoT devices attached to EVs can offer the following features to the users.

  • It can measure the exact parameters of the driver like speed, acceleration, and many other things to offer real-time tips to ensure optimal performance.
  • It can prevent theft by real-time tracking, geo-fencing, and immobilization. This ensures better safety and security to diminish the dependence on insurance.
  • It also checks the performance data of the vehicle, based on which EV and battery OEMs can enhance thee products. Here parameters are the range of each charge, use of a vehicle, performance difference based on geography, age, weather conditions, and adjustment in range for each charge over a certain period.

Fault Alert and Preventive Maintenance System:

Electronic vehicles also face technical glitches as other machines do. IoT-enabled fault alert systems can help alert vehicle drivers about the EV faults, providing them time to act and address them before it’s too late. Though EVs are well designed to prohibit errors, sometimes parts might fail or stop.

To anticipate this, AI algorithms and remote IoT data play a vital role. They help alert the EV users and provide them time to resolve the issues before they actually happen. This enhances customer experience as they can rely on it for optimal performance. In addition, it is necessary to know the overall temperature and moisture conditions in various geographies, and keeping a check on remote performance is essential. These factors will help resolve the issue promptly and promises comfort and security to the user.

Telematics Data:

By using  IoT-based telematics technology, data is gathered when linked to the vehicle sensors, shown through widgets, instant notifications, and produce automatic reports.

Let’s look at the useful factors of employing telematics for monitoring distant electric vehicles.

  • Battery Usage Data: Electric vehicles with telematics allow users to track real-time battery usage data. It lets users check important parameters like current, voltage, and temperature to skip battery breakdowns. Battery usage of EVs can be recorded and shared to a remote server that empowers to customize the battery configuration and enhance the best charging practices.
  • Charging Report: The addition of telematics in electric vehicles allows to yield reports on the vehicles’ entire charging sessions, i.e., the entire lifespan. The charging report shows the time duration, location of the charger station, and percentage of charge received by the vehicles.
  • Nearby Charging Stations Alert: Electric vehicle users encounter challenges like knowing state-of-charge(SOC) to schedule when and where to charge. Electric vehicles keep a tap on solutions with telematics and alert the user concerning the vehicles’ low battery level and the informs about the available nearby charging station.
  • Driver Behavior Data: Electric vehicle remote monitoring system with telematics ensures safety by monitoring and analyzing the electric vehicle performance data and also checks the behavioral data of the driver. Telematic provides quick feedback on driver’s behavior changes to fleet managers/owners through IoT enabled smartphone app. This ensures safety and improvement for better output.

Challenges of IoT in Electric Vehicle Management

Let us know some possible challenges of IoT for monitoring electric vehicles.

Cybersecurity:

The generation of the high amount of data and its transit over a network makes this data vulnerable to cyber-attacks and data leakage. Therefore, it is essential to strengthening the IoT networks used in the EV system to ensure no data leakage.

High Cost:

IoT systems in EVs are expensive. They are highly advanced and have high installation and operating costs. Thus, this technology requires more R&D, and the future might provide better and more cost-friendly IoT solutions.

Weighing the Benefits & Challenges:

We can conclude that IoT plays a crucial role in monitoring electric vehicles. The performance parameters enclose monitoring speed, mileage, acceleration, battery management, fault alert, charging, and predictive maintenance systems.

Overall, IoT holds an important place in the success of electric vehicles. However, challenges like cybersecurity should be considered seriously. EVs are innovative steps toward the environment, and their success will promise a better and green future.

How is Data Science for IoT changing business outlook

How is Data Science for IoT Changing Business Outlook?

The Internet of Things has been noticed as a shape-changing technology that has changed the shape and working process of everything it has touched, either businesses or our daily lives. It has changed the outlook of every individual living a mediocre life into a smart device-connected life.

IoT connected devices produce tremendous amounts of data wirelessly over the network without any human interference, which is proved to be best for organizations trying to offer the best services to their clients. The only challenge is that IoT generates immense data for traditional data science.

Data Science and How It Applies to IoT

We can simply define data science as a study of processes that assists in extracting value from data. In the IoT system, data is referred to information produced by sensors, devices, applications, and other smart gadgets. Meanwhile, value means predicting future trends and outcomes based on the data.

For instance, suppose you are using a fitness tracker that calculates the number of daily steps. Using this information, data science can predict that:

  • Amount of calories burnt by you
  • How many kgs do you lose
  • When is the possible best time for your workout

This is a simple example of how data science works. Internet of Things is different as it produces high-volume data.

As per the reports, the amount of data to be produced by IoT by 2025 is around 73.1 zettabytes. This will cause trouble for standard data science as it cannot handle it, so it will have to update. Thus, IoT will help data science to go to the next level.

What are the Differences Between Traditional and Data Science for IoT?

There are only a few differences between traditional and IoT-based data science, so here we will check a few critical distinctions.

Data Science for IoT Is Dynamic:

The traditional version of data science is static as it is primarily based on historical information. For example, a company collects data from its clients about their choices and needs. The historical data becomes a base for predictive models that assist the company in understanding its future customers.

On the other hand, IoT changes the dynamic of data analysis as it is all about real-time sensor readings from smart devices. The gathered information permits data science consultants to create highly precise evaluations instantly.

In this case, customer data changes and updates- a feature that is not available in traditional data science. Data science for IoT allows continuous learning, changes with time, and improves operational processes simultaneously.

IoT Drives Larger Data Volumes:

Data science is developing with IoT because of its immense data processing. Here we are not discussing megabytes or gigabytes of data but data science for IoT deals with a massive amount of data that often reach zettabytes.

Better Predictive Analytics Method:

Data science for the Internet of Things is dynamic and wider than the traditional one. Additionally, it also makes a better predictive analytics method.

Thus, data science assists businesses in a great way; using it, businesses can develop better solutions that can diminish operational costs and acquire business growth.

IoT can improve this further through its real-time capabilities. IoT helps make decisions more accurate, assisting companies in identifying new opportunities and improving sales and customer experience while optimizing performance.

The Challenges faced by IoT Data Science:

We all know that data science for IoT holds vast potential, but it comes with challenges. Four major risks have to be overcome before it becomes mainstream.

Data Management and Security:

IoT produces a tremendous amount of data, which also implies that there are high chances of hacking or leaking private information. For example, Suppose hackers hijack the connection between the fitness tracker and doctor’s office app; they can easily access sensitive health records. Thus, it is pretty clear that privacy problems are the major issues with IoT data science.

For instance, many companies often face backlashes for releasing customers’ sensitive information without their consent.

Scaling Problems:

IoT data science is also important, but users often struggle to scale it up to fulfill their demands. When an organization plans to integrate an IoT system or add new sensors to its existing software solutions, it faces some issues and challenges.

Therefore, it is important to prepare for scaling projects in advance. Businesses must set up everything from software to personnel to scale data science processes successfully.

Data Analytics Skills:

Data science for IoT is extensively helpful, but classical data science consultant holds good dominance in the market as IoT analytics is still not very much embraced.

However, this could change soon as more companies adopt IoT technology. IoT scientists will have to add new skills and understand the oddities of the deployment process. For this purpose, they’ll have to learn about the following:

  • Edge Computing: It is defined as the practice of processing data close to the source to improve performance and reduce network congestion.
  • Computer-Aided Design: It is essential to know the logic behind the physical design of a smart device.
  • IoT Computing Frameworks: Data scientists must also employ open-source learning tools to grasp IoT hardware.
Operating Costs:

Another major problem with data science for IoT is the huge cost required to introduce new technology. This is the case for most companies willing to join this latest technology on a larger scale but is restricted by budget.

The Bottom Line:

We can conclude that data science for IoT brings a major upgrade to traditional data analytics. It requires efforts and dedication to make data science more robust, powerful, and accurate. IoT can make it possible through data generation abilities. The interconnected devices over the internet constantly communicate to offer businesses a huge amount of user-related data. This allows data scientists to draw relevant conclusions from their databases.

However, the process of deploying data science for IoT is not an easy task, but the benefits it provides negate every challenge. So, we can expect data science for IoT to be a part of the future at a great scale.

How is IoT Helping The Procurement Team in Improving Productivity

How is IoT Helping The Procurement Team in Improving Productivity?

Today, almost every device is connected; whether it is your smartwatch, air conditioner, or television, we can say it’s a world where devices are more connected than people. No, doubt these connected gadgets present around us make our lives easier by working systematically. This is possible because of the most popular concept known as the Internet of Things, which can also influence the procurement team.

IoT, a.k.a Internet of Things, can be defined as a network of interconnected computing devices, either mechanical or digital machines. This technology allows transferring data without human-to-human interaction or human-to-computer interaction. Communication is possible using networks and cloud-based systems.

An IoT ecosystem includes web-enabled smart devices that collect, send and work on data collected from their surroundings utilizing embedded systems such as CPUs, sensors, and communication hardware.

IoT devices can exchange sensor data stored in the cloud for analysis purposes or examined locally by interlinking to an IoT gateway or other edge devices.

Besides this, these gadgets can connect with other related devices and respond according to the information they receive from one another. Even individuals can operate the devices for the beginning setup, give instructions, or recover data; the device can perform most of the tasks without human interference.

The Role of IoT in Procurement

Procurement is an important part of the business. It demands the implementation of new technologies to boost productivity, enhance customer service and save costs. As of now, the procurement process is also embracing automation; IoT in this process is one of the most exclusive things happening in the era of digital transformation.

The inclusion of the Internet of Things will provide greater spending visibility and understanding of the supply and equipment used for the procurement process. So, with a proper understanding of what is being used and the requirement specified, the procurement team will have access to optimize catalogs and manage expenditure. Forecasting demands more closely using analytics can significantly improve budget and contract management. This also helps in improving budget and contract management. Despite this, the data generated through IoT sensors and other devices can assist in making informed decisions.

Let’s know how IoT works in procurement.

Traceability of Materials:

A study done by a McKinsey Global Institute shows that by the end of 2025, the Internet of Things’ possible contributions to inventory management, logistics, and supply chain management would reach 560 billion to $850 billion per year. This shows the possible IoT-oriented future awaiting us. Most of the time, IoT contributes to these sections by tracking. IoT sensors can help in making inventory management systems more effective.

For instance, RFID tags connected with IoT devices can track physical inventories and eliminates the need to scan barcodes or labels. In fact, businesses with vast inventory can track the days before items expire using interlinked IoT devices, saving the business from huge losses. IoT also prevents product theft by enabling businesses to know the location of their products.

With the use of machine learning, procurement teams can manage products per demand.

Supply Chain Visibility:

In this process, the procurement team can also potentially use IoT technology. Supply chain visibility, items are documented as transported from the manufacturer to the customer. An IoT-enabled system can read data from various devices like smart tags and sensory data like surrounding temperature and humidity, vehicle speed, and geolocation and accordingly follow the supply chain when connected to it.

The adoption of IoT devices to track inventory and route planning provides the details about where and when items are delayed in transportation. This allows emergency planning and identification of other options to accelerate the supply chain.

Stock Management:

Along with smart shelves and storage bins that inform about the stock levels in real-time and how long the product has been on the shelf, IoT also assists in detecting the pattern of consumption.

For instance, if a product named X is on shelf A and has been the quickest utilized item, IoT sensors will monitor the usage rate and suggest its economic order quantity (EOQ).

This clears how essential procuring an item is, which products are needed, and what amount. Procuring the right inventory quantity reduces costs by lowering waste and the menace of shortage.

Monitor and Alert Maintenance:

The sudden breakdown of equipment in a production unit is the most horrifying dream as it disrupts the business. If the condition of the equipment is not known, things become more difficult and result into process disturbance, indefinite downtime, and even business loss. Regular monitoring of the equipment’s condition through IoT sensors permits the team to watch indicators like vibration, oil, temperature, and performance.

When these indicators go out of range, the sensor alerts the team via computers.

In fact, smart sensors also alert when a machine’s working pattern changes or is about to fail. So this allows teams to schedule the maintenance, decrease the chances of sudden machine failure, and ensure seamless productivity.

Better Decision Making With Predictive Data Analytics:

Procurement teams can predict the future using predictive data analytics and spend analytics. These predictions assist in making critical decisions for designing and executing business techniques. Continous flow and accumulation of data with IoT devices also help create more robust and relevant historical data.

Infact, joining IoT data with additional data coming from other sources can boost business growth.

For example, knowing what quantity of a product is needed can help send accurate requisitions for approvals and create error-free purchase orders.

For example, having information on what quantity of a product is being used can help in sending accurate requisitions for approvals and generating error-free purchase orders. This results in an efficient and effective purchase management system. Data collected by IoT can also be used for onboarding suppliers with supplier management solutions to get new products based on previous performance metrics and set criteria.

IoT Procurement Takeaway:

The Internet of Things has become a sensation and is impacting almost every industry. So, it will be smart to invest in this technology and unheave the existing business model.

The procurement team requires a comprehensive IoT framework consisting of machine learning, artificial intelligence, and embedded technologies. These technologies, all together, can bring holistic change and offer maximum benefit.

How can IoT Sensors Improve Productivity in Manufacturing

How can IoT Sensors Improve Productivity in Manufacturing?

Internet of Things has been reaching out to almost every sector, and as a result, it is expected that the global IIoT market will reach $103.38 billion by 2026. Today IoT devices are more affordable, and many manufacturers invest in smart factory technology. One of the significant parts of smart factory technology is IoT sensors. It is essential to gather the necessary information and send data to the cloud for analysis in manufacturing. Businesses analyze data collected from the sensors to produce the most fitting solution to enhance productivity, avoid unplanned downtime, and cut manufacturing expenses.

IoT Sensors

In the Industrial Internet of Things, sensors are able to detect different types of external information and change it into data or signals that humans and machines can comprehend. Data is stored in a database which is managed either on the cloud or within the building for processing and analysis. 

IoT sensors employ different types of technology like optics, infrared and thermal to catch the required information. Sensors can also collect one or many kinds of data. Sensors include measuring distance, levels, pressure, environment changes, or anomalies in production line batches.

Types of IoT Sensors

Vision Sensors:

Images are caught by a camera and processed using software to know parts’ presence, orientation, and accuracy. Adoption of vision sensors ensures product quality and consistency throughout batches. It is used chiefly on automotive, food and beverage, and general manufacturing production lines.

Proximity Sensors:

This sensor is used to calculate the distance between two objects. It is used primarily in manufacturing, where machines must know distances between products or measurements for assembly robots.

Pressure Sensors:

This sensor is used to measure the pressure of fluids or gases in an industrial environment. It is vital to maintain the correct pressure for the product quality or safety of the crew.

Temperature Sensors:

The temperature of the component indicates if they are failing or overheating. This can allow the maintenance crew to replace the fault before it results in expensive mechanical failure. Temperature sensors also monitor the ambient temperature to assure the quality of the product or food safety. Instant alert of a cooler going over-regulated temperature helps in saving the unplanned cost of food waste.

Humidity Sensors:

Balanced moisture can be an essential factor contributing to the final product quality. Monitoring the moisture guarantees that quality standards are always fulfilled. 

Humidity also degrades equipment, so this sensor can inform the team if the humidity level gets disturbed. It is crucial to maintain the required moisture to enhance sensitive equipment’s life. 

Level Sensors:

Level sensors alert the team if the fluid or solids level goes down. In this way, it ensures that hoppers are filled before they run out, and production time is not lost.

Acceleration and Vibration Sensors:

It is crucial to monitor the movement of equipment to know the accuracy or need for machinery maintenance—excessive vibration in the machine indicates loose bolts or worn-out bearings or motors that are about to fail.

Sound Sensors:

The pitch of some machinery also indicates whether it is operating correctly or not. By observing the machine’s pitch, the maintenance crew can be informed if the machine is running too high or low and needs repair or replacement.

With the evolvement of IIoT technology, major industrial sensor manufacturers are designing “smart” sensors. These sensors are easy to implement than analogue ones (as it requires PLCs to process and interpret data protocol). A smart sensor is able to process data within the sensor and transmit it directly back to the managing platform. This causes data transmission to be more versatile and saves bandwidth by just sending helpful information.

IoT Sensor Connectivity

IIoT deployment may involve a few or thousands of sensors monitoring and controlling a single machine or an entire production line. Sensors need to be connected to send back the data to the network and cloud software. This connection can be wireless or wired, and each of them comes with some form of pros and cons. 

Many manufacturing plants opt to hardwire their IoT devices using industrial Ethernet cables. Hardwiring can guarantee a reliable connection, but the distance between sensors, I/O blocks and PLCs can limit its function. There is also the risk of damage to the cable, which comes with the cost of replacing it. 

Nowadays, wireless IoT sensors are in trend as wireless are more powerful and reliable. It can cover a much larger area and distance. It is more scalable as many sensors can be deployed through this. 

For instance, a single private LTE network can wirelessly connect many devices on a factory floor and provide seamless functioning.

How Are Manufacturers Improving Productivity?

Here are some examples that prove that IoT sensors play an essential role in helping manufacturers save costs and improve productivity.

Enhanced Product Quality:

In machines already connected to the cloud platforms, it is easy to store data such as temperature and pressure to track in production batches digitally. Machine vision via high-resolution cameras is another way of tracking products through a production line. Vision sensors with software can monitor product quality. Hence, this technology can reduce poor-quality products from reaching consumers who can imperil the company.

Minimize Unplanned Downtime with Predictive Maintenance:

The accessibility to real-time data and cloud-based analytics allows engineers and maintenance crew to spot inefficiencies in machinery. It is more valuable than scheduled maintenance, in which programs can analyze data collected from sensors to predict if an unplanned breakdown will occur or not. This ultimately helps technicians replace components before they fail, dodging any accident or expensive repair.

Warehouse Management and Asset Tracking:

In a smart warehouse, the IoT sensors can help track the flow of assets throughout the factory. Autonomous robots can pick or move or pack orders without human interference. Automating these tasks can allow employees to focus on other priority tasks.

Improve Procurement and Forecasting:

Sensors can also be helpful for procurement managers. Sensors installed on the production line can watch the assembly of products, help control raw materials usage, and reduce waste. It also alerts the crew when the supply goes down. Thus monitoring these essential items using sensors can reduce waste and enhance forecasting.

Product Development:

We all know that product development is one of the most critical and costly processes in manufacturing. Manufacturers can reduce the sum and make a better decision before concluding on total production.
One of the best ways is to gather data through sensors on the production floor and advanced manufacturing analytics to reduce the time consumed in the R&D process.

In fact, sensors on products can be implemented to collect data in real-life scenarios. Collecting data in real-time allows engineers to make rapid changes to get a more efficient product.

Summary

It is apparent that sensors plan a crucial role in daily operations throughout factories. Data collected using sensors can help develop a more efficient production line, machine operation, and safety.