Technology

How can Sustainability Change the Industrial Data Architecture? 

Sustainability should not just be correlated to environmental policies; this term is now essential to business and life today. It is now just beyond the govt policies. Today, supply chain partners, customers, regulators, and investors are more focused on environmentally friendly products and asking for environmental accountability from manufacturers. Obviously, the reason is to protect the environment. The changing climate, increasing carbon emissions, and their after-effects have forced us to rethink the manufacturing models.

International Energy Agency states that the manufacturing and power sectors cause around 63% of energy-related CO2 emissions globally. But changes and progress depend entirely upon their success. Luckily, manufacturing has reached a long way since the third industrial revolution, which saw changes in automation and productivity without thinking about environmental impact. The fourth industrial revolution, which is popularly known as Industry 4.0, has provided manufacturers with more precise and detailed insight into their operational efficiencies. Network-connected assets enable real-time monitoring of performance metrics that integrate with more sustainable production. However, this type of connection or connectivity presents a new challenge that is- managing data more efficiently.

What are the challenges in achieving sustainability?

Handling emissions and data-center energy consumption means manufacturers must manage sustainability on two fronts. The first place is managing it in their operations. In Europe, Industry is one of the main reasons, or we can say a significant contributor to greenhouse gases.

At a global level, industrial processes are also the fastest-growing source of greenhouse gas emissions, rising by 203% since 1990. To slow this highly speedy trend and accelerate the progress on reducing CO2 emissions and achieving net zero, industrial companies must learn operational data management and pull insights from that data. However, this seems easy but is actually very challenging. As per IDC’s first Worldwide Energy Transition Survey conducted in June 2022 (#US49548622),45% of respondents mentioned a lack of good data on energy usage and CO2 emissions as an obstacle to progress.

Therefore, industrial companies must gather high-quality data from various sources for sustainability and other operational use cases. Unfortunately, this leads to the second challenge- While reducing operational carbon, are we increasing carbon consumption from the vast data we store and process in the cloud?

Data processing and storage must be a combination of the sustainability equation. Stanford Magazine says saving and storing 100 gigabytes of data in the cloud generates around 0.2 tons of CO2 annually. According to Standford’s calculation, if a factory generated 1TB of data daily and saved all this data to the cloud, the site would create 365,000 gigabytes or 730 tons of CO2 yearly. In a large manufacturer with around 60 sites, the factory would create 43,800 tons of CO2 emissions yearly for data processing and storage alone. To understand this perspective in simple words, we can say that it is equivalent to nearly 10,000 passengers vehicles on the road yearly.

Manufacturers must evaluate their total carbon footprint with a strategy that can address both points of this two-fold challenge. Data is undoubtedly essential for visibility, and the cloud is vital for scale. Therefore, data must be collected, processed, analyzed, and utilized correctly to achieve genuinely sustainable manufacturing.

Beginning with a sustainable architecture:

DataOps (data operations) orchestrates people, processes, and technology to safely deliver reliable, ready-to-use data to all who need it. DataOps provides an agile, automated, and process-oriented methodology that data stakeholders use to enhance data and analytics’ quality, delivery, and management.

An Industrial DataOpS solution is an application designed especially for industrial data and systems. Industrial DataOps is a new type of software solution that acknowledges the industrial’s evolving data architecture needs as they adopt Industry 4.0, Digital Transformation, and Smart Manufacturing. They allow manufacturers to create and stream valuable industrial data to the cloud, where it can analyze for sustainability use cases.

Users can prepare, integrate, and standardize data at the edge to guarantee that only logical, usable information payloads are furnished to the cloud. It lessens unnecessary data storage and processing costs while accelerating the adoption of advanced analytics services from vendors like AWS and Microsoft. We can mark the example of Pulp and paper manufacturer Georgia-Pacifi over here. It is a company that potentially used an Industrial DataOps solution, HighByte Intelligence Hub, to achieve its sustainability ambitions.

What’s coming up:

Today, we can quickly notice that sustainability use cases for Industrial DataOps are booming. It is obvious that Industrial DataOps will become a critical architectural component to assist companies in reducing emissions, cutting energy consumption, optimizing grid and alternative energy usage, decreasing digital waste, and optimizing processes.

Also, manufacturing sustainability is not limited to reducing CO2 and SO2 emissions. By decreasing defects and scrap using standard Lean and Six Sigma methods, companies can also help in their sustainability goals by spending less power per unit and potentially increasing production. These projects will allow customers to progress on their sustainability initiatives- and enhance their bottom line.

So, what’s your sustainable manufacturing strategy? Are you using your operational data smartly or creating digital waste?

How will Smart Farming decide the Future of Agriculture

How will Smart Farming decide the Future of Agriculture?

Today, farmers are facing more pressure than ever before. Demand for food is growing as the population increases, whereas agricultural land is used for urbanization. Not just this, the challenges caused by climate change are also decreasing the yield. Sometimes drought, sometimes flood, and unseasonal rain impact the total yearly yield, ultimately causing a shortage of food. 

In the coming years, agricultural enterprises must operate in new and adapted ways to achieve sustainability and the capability to survive. The latest and most advanced technologies, falling under the roof of  Smart Farming, provide opportunities for farmers to overcome unprecedented challenges while passing the agricultural way of life to future generations. This has led to a boost in the yield along with the profit. 

Unfortunately, local farms, including some in the world’s most fertile lands, are also declining today. Therefore, creating a viable business is becoming challenging, and farmers must find ways to work more smartly instead of shedding sweat in the field. 

Historically, agricultural structures demand immense amounts of time, money, and effort to order, unload, store, plant, monitor, cultivate, and harvest crops. 

Advanced smart farming technologies provide new methods to simplify the workflow and enhance operations, leading to robust businesses.

IoT’s Shining Agricultural Future

The Internet of Things (IoT) is the soul of this transformation process. Intelligent sensors are implanted throughout a farm that behaves like the eyes and ears of the farmers. It collects information about crops, the equipment’s condition, and performance. One of IoT technology’s most crucial characteristics is its ability to expand visibility to new endpoints. IoT empowers farmers with real-time monitoring and analytics systems through which they gain more insights into their operations and the capability to handle them more efficiently.

Let’s know some of the ways through which smart farming improves agricultural enterprises and will continue to do so in coming years:

1: Monitoring Crop Growth

IoT in the agriculture industry acts like a superhero; it assists farmers in improving the crop’s quality and the land’s fertility. Sensors integrated with IoT systems collect nutrient density information, allowing farmers to adjust the amount of fertilizer to be used. If any symptoms of infestation are observed, using pesticides can eliminate the invasion. In actuality, data-driven agriculture always empowers farmers because the information received permits adjusting activities imaging the current conditions, handling the crop cycle more effectively, achieving efficiency, and enhancing crop growth.

2: Improving Greenhouse Operations

Greenhouse IoT sensors improve visibility and automate traditional manual functions, making the entire process more efficient and automated. They gather and transfer real-time data, like air pressure, humidity, temperature, soil conditions, and light levels. In fact, water consumption can be managed with SMS or email alerts if any defects occur. In modified systems, adjustments are made automatically. The processes turn out to be more cost-effective and accurate, and operational performance improves.

3: Tracking Water consumption

Agricultural IoT supports farmers in monitoring water tank levels in real time by tracking the amount of water being used and the amount of water left in the tank. Smartphones provide intuitive reports that analyze trends and make recommendations in many cases. Farmers can alter water usage as needed, making irrigation more efficient and economical.

Predictive Equipment Maintenance

Farmers can monitor their land, vehicles, and other assets through IoT. Farmers wish to reduce downtime as the equipment is essential to daily operations. It offers a clear view of the device’s performance, which updates as the equipment operates. Advanced data analytics provides them with the required management insights. Artificial Intelligence and machine learning measure an asset’s typical efficiency and wear and tear based on metrics like vibration analysis, oil analysis, and thermal imaging.  

Predictive maintenance models depend on complicated algorithms to determine when an asset must be serviced, fixed, or retired. These insights come before the device stops performing. This assures that operations and processes at farms are continuous and seamless. The other advantages include lengthened machinery lifecycles, reduced downtime, and productive outcomes.

Smart Livestock Management

We all know that livestock management and monitoring demand good quality of time, effort, and money. Traditionally, employees are hired on farms to look after the health or injury of the cattle. The process is undoubtedly costly, highly unreliable, and inefficient.

IoT solutions terminate speculation when diagnosing an animal’s health by monitoring temperature, heart rate, blood pressure, etc. The information is sent through the wireless network to an application in real time.

Farmers can then access the mentioned information using mobile devices:

  • Each animal’s health condition and location in its herds can be checked from anywhere at any time.
  • Farmers can also check the peak mating time and season of the cattle.
  • Farmers receive alerts if a metric falls outside of the normal range.
  • Most suitable gazing spots can be easily determined.

Benefits to Agriculture and Personalized Services

By embracing smart farming technology, farmers can develop more suitable approaches, and this proficiency changes the relationship between customers and retailers. The farmers can emphasize consumers’ interest in sustainability and eco-friendly food while focusing on creating new strands of their products. They can then charge a premium for their products, enhance revenue and create a more substantial business.

Smart sensors automatically observe every facet of everyday agricultural work. This advanced technology allows farmers to automate real-time data collection, boost production volumes, cut down costs, reduce waste, and much more things that increase productivity. These many advantages are compelling farmers to spend on technology.

According to the worldwide smart farming review, investment in this field will increase from $3.715 billion in 2022 to $7.040 billion in 2026, a CAGR of 13.65 percent. It means farmers will have added hundreds of millions of IoT sensors to improve their everyday operations.

Steering Efficiency

Smart farming technology provides businesses with new ways to increase agricultural efficiency, reducing costs and boosting revenue. In other words, smart farming technology is most significant for the growth of modern farming, increasing the yield to meet growing demand and will keep agricultural industries viable in the future.

What is the Impact of IoT on Global Logistics Development

We all know that today, the logistics market is dynamic and has become competitive. In the last few decades, logistics has been redesigned not just because of rising competition and circumstances in the world but also because the Internet of Things (IoT) has dived deeper into the logistics niche.

As per KPMG reports, market challenges are compelling participants to find new development points for the business and recreate existing supply chains, like rail transit in the Asia-Europe direction. A high empty mileage decreases the efficiency of cargo transportation and causes congestion on the decided routes. Let’s look at modern IoT logistics solutions; and how they impact international logistics and transport.

What is IoT in logistics?

We can simply understand this technology through examples such as IoT, a modern smart refrigerator door that orders the delivery of your favorite pizza and drinks, or a smart kettle that brews your coffee in one click from a smartphone. There are smart sensors in agricultural fields and drones with high-pixel cameras that allows farmers to monitor the condition of the soil. The world will become an entire Internet of Things complex in a few more years. 

However, when we mention the word Internet of Things, the first relation of this smart and emerging technology links with smart devices and tools that are physically available. Yet, IoT goes far beyond this and especially in global logistics.

IoT Logistics Examples

With the reduced cost of technology, the size of IoT devices also decreases. It is now quite apparent that devices and instruments are getting smaller with the growing market. Smaller sensors gather a more significant amount of data through creative and non-destructive placement.

Let’s assess what modern developments have been designed for us besides the sensors.

Warehouse & Inventory Management using IoT

IoT sensors track inventory and furnish data that can be utilized in trend analysis to presage inventory needs. Goods are automatically repositioned with stacker cranes’ assistance, production time and labor costs are cut down, and the human factor is balanced because the robot does not need leisure hours. This will bypass under-stock and over-stock situations.

Tracking Goods From Purchase To Delivery

Traditional monitoring depends on scanning an order between points of delivery. Special tags like RFID or Radio Frequency Identification simplify the search operation by connecting to the cloud and sending location data more frequently than scanning. This might get you back to the QR codes or Data Matrix times. Yes, they can also be used by analogy, but unlike FID, optical codes have to be scanned individually for each item, which takes time.

RFID tags reduce unnecessary expenditure. On average, the precision of inventory levels is approximately 65 percent. Employing RFID raises it to 95 percent. BigData monitoring under RFID will identify the most persuasive couriers and truckers, choose the most efficient delivery routes, and more. If delivery staff show unexpected results, they are sent for further revisions.

Drone Delivery

Drones are remotely controlled and unmanned aerial vehicles and droids that can improve the speed and efficiency of various logistics infrastructures. It is no more a trend or novelty as today’s developments are improving the accuracy and speed of their movement. As per the CompTIA poll, drones are employed by companies of different sectors and sizes. They enable the automation of business processes and allow smart inventory tracking, fast product transportation, and prompt delivery from stores.

Future Insights of IoT in Logistics

The proliferation of the Internet of Things in the international logistics market generated $34,504.8 million in 2019. Prescient Strategic intelligence shows a steady CAGR of 13.2 percent by the end of 2030. Nowadays, crucial assignments of logistics companies are the following:

  • Assure just-in-time delivery.
  • Offer transparency in the supply chain.
  • Ensure the transparency of the transport cycle and grade of services.

The success of any logistics company depends on effective stock and warehousing management, automation of internal business processes, prompt delivery, and assuring the safe storage of goods. Data becomes helpful when it passes through this cycle. Wireless networks like Bluetooth, GSM, Wi-Fi, etc., offer information exchange in logistics processes.

IoT has now become part of all the sectors where transport is involved. That is, its impact and usage are just not limited to logistics and transport. Instead, it is used in manufacturing and retail trade, including e-commerce, hospitals, construction, and many other sectors. This enables transparency of processes in the supply chain, better and more stable work of transport and employees, and saves company resources.

The logistics business is attaining a new height after embracing IoT, as it provides efficacious solutions aimed at working with Big Data, speeding logistics supply chains, and many other things. This is supported by other advanced trends like the proliferation of the 5G Internet, the fast growth of mobile applications, and cloud services.

Metaverse App Development Guide for Business

A Comprehensive Guide for Businesses on Developing Metaverse Applications

What once started as a communication revolution in the form of text, images, and two-dimensional formatting has now begun to evolve into new dimensions. 

The metaverse has been part of our lives in some way or another for a certain time, but the advancement of critical technologies has considerably driven how to define and use the web. As business owners are working hard to remain on top of the competition, one needs to stay aware of the technologies of this space if one wishes to develop applications and even entire digital worlds for their customers. 

Let’s discuss the technologies used in metaverse app development and how businesses can make their metaverse applications.

The Metaverse for Business in detail

Neal Stephenson’s Snow Crash coined the phrase that turned out to be the name for the metaverse, and executives like Mark Zuckerberg are pivoting the book’s prognostic forecasts of business, the economy, and society into a reality. As defined in modern business, the metaverse is a mesmerizing next step of the Internet where users can participate in virtual, immersive worlds. 

As per Bloomberg, metaverse technologies will expand to the $800 billion market by the end of 2022. If businesses wish to stay pertinent throughout the evolution, they must stay on top of the technologies steering the growth of ‘web 3’ forward. 

Technology Route for the Metaverse Development

Several technologies support metaverse expansion. Comprehending each of them and identifying where they intersect is integral to innovation.

What is the Role of Virtual Reality and Augmented Reality in the Metaverse

Today, Virtual Reality is addressed as one of the most innovative technologies pushing the metaverse forward, but it has several constraints. Since these are rising technologies, the world isn’t very welcoming of this easily accessible Virtual Reality. This is due to limited mobility. To experience Virtual Reality, the user must have a bulky VR headset that restricts the head or body movements required to get the whole experience. Additionally, the cost of VR devices is high, and there are yet to be standards for Virtual Reality, so content developed for one platform may not work with another.

Another way Augmented Reality can be used for a more intensified experience is through the ‘try before you buy’ retail strategy. With virtual fitting room technology or similar technologies, buyers can try on items virtually with AR before deciding to purchase.

For this- IKEA is the best example of how this functionality extends to interior design and furniture, as it allows shoppers to place virtual furniture in their house to see how it may look before buying it.

Natural Language Processing (NLP)

Natural language processing is a subdivision of artificial intelligence necessary for the growth of the metaverse. It is an advanced way for AI to interpret and imitate human speech. It will be an excellent way for users and AI to communicate through customer service chatbots and virtual assistants. Not just this, but it will also make the metaverse more accessible to different groups of people. For instance, conversational artificial intelligence allows rich real-time language translation, even if challenging. 

Also, a non-monotonic relationship exists between the source speech and target translations. It indicates that the words at the end of the speech can impact words at the beginning of the translations. This implies that there is no actual real-time speech translation because there is always the need to check the translated text’s consistency against the original speech. There is a slight delay even when we cannot see it. 

Therefore, you require developed algorithms to stabilize live speech translation, as Google accomplishes in its Google Translate to lower the number of re-translations.

Internally, real-time speech translations can be organized as follows: the user says something, the user’s speech converts into a text, and the text is further translated into another language. Once the speech is ended or paused and the final re-translation is completed, the text converts into a speech using speech-to-text technologies. 

Natural language processing also offers live captions for users having hearing impairments. For example, AI technology can immediately transcribe the conversation of a group of people, making communication within a metaverse application available to users with hearing disabilities.

Virtual Assistant Technology

NLP also develops digital voice assistants and AI avatars that can enable users to the hand-free operations of their devices and provide targeted recommendations. Meta is already designing a voice assistant that will be used in the metaverse applications in the coming years. 

Virtual assistants can conduct language translation, financial management, and many other things. The picture of users in the metaverse as AI avatars or digital humans also depends on NLP. Conversational AI lets avatars process and comprehend human language and respond to voice commands. Last year, NVIDIA introduced the Omniverse Avatar modeling platform, which permits the development of virtual versions of people who identify speech and capture emotions on users’ faces. 

Customer service is one crucial role virtual assistants can help with in the metaverse. The shopping experiences in the metaverse will be highly captivating, and conversational AI will be beneficial for letting shoppers ask virtual customer service avatars about the attributes of the goods, payment terms, discounts, and the like.

Computer Vision

Computer vision allows machines to develop better digital copies of objects, identify images and patterns, and even determine the expressions and perspectives of users. One of the constraints of VR and AR experiences is control. Hardware controllers, gloves, or other kinds of physical devices are used to input into the device. 

However, the computer can make this experience more natural by using hand tracking. Users can interact with their devices more naturally and freely by remembering gestures and finger positions. This is how it can work. AR execution includes coordinating the cell phone’s video camera and LiDAR. 

A video camera captures the video/image of the real world and the user’s hand. LiDAR calculates the distance between the natural world and the user’s hand. Using this information, one can correctly place virtual objects on the phone screen. Therefore, from the user’s perspective, the virtual objects look like a part of the real world. 

With computer vision technologies, we can identify if the user tries communicating with the virtual object with the hand. For example- Placing the virtual object in a cart in a virtual shop or animating objects( useful, especially for AR-interactive games).

Computer vision in the metaverse is not limited to this; ReadyPlayerMe utilizes face recognition to produce a virtual avatar using a user’s selfie. Most video games and platforms need users to produce a brand-new avatar for each service. However, these avatars made by computer vision are designed to be utilized across thousands of different platforms.

Internet of Things (IoT) and the Metaverse

Artificial Intelligence is just a component of the metaverse story, and it is not the answer to every question and challenge that developers face while developing metaverse projects. AI demands high-quality data, and data needs to be collected from somewhere. Internet of Things devices and sensors are essential for getting high-quality real-time data to AI systems for analysis.

One of the most valuable uses of IoT in the metaverse is digital twins; This technique uses IoT sensors to develop a digital version of an environment or system. VR depends on virtual environments and can develop a virtual picture of an environment using sensors.

The metaverse is not just a new thing to the digital world but a junction and uniform crossover between the real and digital worlds. Integrating augmented reality technologies with IoT sensors can bring the real world into the digital and turn digital into the real world. This merger will revolutionize metaverse technologies.

The Blockchain’s Role in the Metaverse

Blockchain platforms, a global and decentralized system, are in demand for their use in metaverse projects. Centralized data storage is a challenge in the metaverse because of the obstacles to the flow of information. Open solutions such as blockchain enable a more fluid flow of information and assurance of ownership for digital assets. This causes high demand for developing systems that aid cryptocurrencies and non-fungible tokens.

Today, Non-fungible tokens, or NFTs, are one of the most promising ways to create the metaverse economy. Since every token is unique, it is a dependable proof of digital ownership registered in the blockchain. For instance, users can purchase in-game assets and digital real estate as non-fungible tokens that symbolize the privilege of owning these items.

3D Modeling

We all know that the metaverse depends on virtual worlds, and today 3D Modeling is a skill in demand. It begins with decorating homes to creating skins for avatars; Modeling is something virtual worlds can only do with. Today, a large number of objects need to be digitized, and IoT sensors need to be used to develop digital twins of environments.

Large databases must be made of real-world objects that have been ‘3D captured’ and digitized.
However, this is not easy as there are challenges to digitizing the real world. The higher resolution of an object means the more excellent memory it will use. Therefore finding space for these objects and rendering them on lower-end hardware is not also feasible. This is challenging for VR support as VR experiences have to be set at higher frame rates to manage immersion.

However, when all the objects in a scene have high poly counts, their performance is next level. Handling this is essential for providing successful metaverse experiences.

Metaverse Software Development: How to initiate a Project

As we resume the wild west of the development of the metaverse and web 3.0, there are limitless opportunities for ideas to turn into reality. The most important thing is that a business should stay competitive at any cost, even if these technologies bloom the ideas that raise the wave of disruption or if these ideas enhance the potential of your business to reach the untouched markets.

For example: Let’s say your team wants to create an immersive retail store using metaverse technology. To execute, the project would require a fully 3D VR environment for objects to serve as products. This virtual store would also require digital customer service agents to assist users in finding their needs.

The metaverse use cases don’t limit there. It is used in the virtual meeting room where you and your colleagues can communicate as avatars. Not just this, imagine a designer could decorate, decide and change the color of walls and furniture in the VR metaverse. Yes, Modern technology can make all these things possible.

How can Artificial Intelligence Boost the Manufacturing Industry?

Today, most of the Giant industries, around 83 percent, believe that AI delivers better outcomes; however, only 20 percent have embraced this technology. It is pretty clear that a stronghold on the domain is important for successfully adopting artificial intelligence in the manufacturing industry.

Domain expertise is important for successfully adopting artificial intelligence in the manufacturing industry. Jointly, they form Industrial AI that uses machine learning algorithms in domain-specific industrial applications. AI can be potentially used in the manufacturing industry through machine learning, deep learning, and computer vision.

Let’s check out some of the critical needs in artificial intelligence technologies in the manufacturing industry to obtain a better picture of what one should do to keep the business up-to-date and seamless.

AI Is a Broad Domain

Artificial intelligence is not the correct way to describe all the technologies, and we’ll discuss that they have applications in manufacturing industries. AI is a big subject with different methods and techniques that fall under it.
There are robotics, natural language processing, machine learning, computer vision, and many other technologies that also need attention.

Keeping this in mind, let’s begin with artificial intelligence applications in the manufacturing industry. So here are some industrial uses of AI.

The Goal of AI in Manufacturing

Artificial intelligence studies how machines can process information and make decisions without human interference. The best way to understand this is that AI aims to mimic how humans think but not necessarily. We all know that humans are better and more efficient in performing certain tasks, and in certain tasks, they are not. The best type of AI is one that can think and make decisions rationally and accurately. The best way to explain this is that we all know that humans are not efficient enough to process data and the complex patterns that appear within large datasets.

However, AI can easily do this job using sensor data of a manufacturing machine and pick out outliers in the data that provide information about the machine that will require maintenance in a few weeks. Artificial Intelligence can perform this in a fraction of a human’s time analyzing the data.

Robotics: The foundation of Modern Manufacturing

Many applications of artificial intelligence include software in place of hardware. However, robotics is mainly focused on highly specialized hardware. As per Global Market Insights, Inc, the industrial robotics market is expected to grow more than $80 billion by 2024. In many factories, for instance, Japan’s Fanuc Plant, the robot-to-human ratio is approx 14:1. This reflects that its possible to automate a large part of the factory to reduce product cost, improve human safety and enhance efficiency.

Industrial robotics demands specific hardware and artificial intelligence software to assist the robot in accurately performing its tasks. These machines are specialized and are not in the business of making decisions. They can run under the supervision of technicians, and if not even, they make very few mistakes compared to humans. Since they make very few mistakes, the overall efficiency of a factory improves when integrated with robotics.

When artificial intelligence is integrated with industrial robotics, machines can automate tasks like material handling, assembly, and inspection.

Robotic Processing Automation:

Robotic processing automation, artificial intelligence, and robotics are among the most familiar. It is important to understand that this process is not related to hardware machinery but software.

It involves the principles of assembly line robots for software applications like data extraction, file migration, form completion and processing, and more. However, these tasks do not play very important roles in manufacturing; they are significant in inventory management and other business tasks. It becomes more important if the production operation requires software installations on each unit.

Computer Vision: AI Powering Visual Inspection

Quality control is the manufacturing industry’s most significant use case for artificial intelligence. Even industrial robots can make a mistake, though the possibility is less than humans. It can be a huge loss if a defective product reaches the consumer by mistake. Humans can manually monitor assembly lines and identify defective products, but no matter how attentive they stay, some defective products will always slip through the cracks. Therefore artificial intelligence can help the manufacturing process by reviewing products for us.

Adding hardware like cameras and IoT sensors, products can be interpreted by AI software to catch defects automatically. The computer can then automatically decide what to do with defective products.

Natural Language Processing: Improving Issue Report Efficiency

Chatbots driven by natural language processing is an important manufacturing AI trend that makes factory issue reporting and helps requests more efficiently. It is a domain of AI that specializes in mimicking natural human conversation. Suppose workers can access the devices to communicate and report their issues and questions to chatbots. In that case, artificial intelligence can support them in filing proficient reports more promptly in an easy-to-interpret format. It makes workers more accountable and decreases the load for both workers and supervisors.

Web Scraping:

Manufacturers can use NLP for an improved understanding of data collected with the help of a task called web scraping. AI can check online sources for appropriate industry benchmark information and transportation, labor, and fuel costs. It can help in boosting business operations.

Emotional Mapping:

Machines are quite poor when it comes to emotional communication. It is very challenging for a computer to understand the context of a user’s emotional inflection. However, natural language processing is enhancing this area through emotional mapping. This brings a wide variety of opportunities for computers to understand the feelings of customers and operators.

Machine Learning, Neural Networks, and Deep Learning

The three technologies used in the manufacturing industry are machine learning, neural networks, and deep learning, which are artificial intelligence techniques used for different solutions:

  • Machine Learning: It is an artificial intelligence technique in which an algorithm learns from training data to decide and identify patterns in collected real-world data.
  • Neural Networks: Using ‘artificial neurons,’ neural networks accept input in an input layer. The input is passed to hidden layers that increase the weight of the input and direction to the output layer.
  • Deep Learning: It is a machine learning method where the software mimics the human brain like a neural network, but the information goes from one layer to the next for higher processing.

Future of AI in Manufacturing

What will be the next role of artificial intelligence in manufacturing? There are so many thoughts and visions coming from science and technology. The most visible change will be an increased focus on data collection. AI technologies and techniques used in manufacturing can do so much work independently. As the Industrial Internet of Things grows with increased use and effectiveness, more data can be gathered and then used by AI platforms to improve different tasks in manufacturing.

However, with the advancement in AI in the coming years, we may observe completely automated factories and product designs made automatically with less human interference. However, reaching this point is only possible through continuous innovation. All it requires is an idea- it can be the unification of technologies or using technology in a new case. Those innovations alter the manufacturing market landscape and help businesses stand out.

Energy Harvesting and IIoT- Sustainability for the IIoT

Energy Harvesting and IIoT: Sustainability for the Industrial IoT

The world is encountering tremendous economic and ecological changes along with challenges. The futuristic technologies are all set to transform the outlook of Internet of Things (IoT). Today energy supply to millions of communicating devices is a key issue. 

On a large scale, renewable energies have become a major source of energy generation. Fields embracing solar cells that generate energy using sunlight or wind turbines dominate the landscape. This renewable energy for energy generation is also embraced on a small scale. This entire concept is called “energy harvesting.” 

Small energy converters harvest energy from light, movement, or temperature differences. These harvested energies are enough to power a wireless sensor and transmit data using radio. 

Energy harvesting for radio-based products that are already part of mass production includes four different sources:

  • Motion – the press on a switch, moving machine parts, the rotary motion of a handle.
  • Light– the sunlight coming inside a room.
  • Temperature differences – existing between a heat source like a boiler, radiator, or pipes and the environment and variation between day and night.
  • Electromagnetic field – a contactless coil in a cage clamp around a cable controls the meter and calculates the line current.

For each source, different energy converters with different power parameters are present. The energy generation type and the corresponding power yield determine the possible sensor applications.

Enhanced Sustainability:

With the introduction of energy harvesting technology, radio sensors are sustainable as they don’t require cabling or battery power. They are environment friendly as well as cut expenditure.

Replacing a single battery typically costs around $300 US dollars in an industrial environment. Though changing the battery does not consume much time, traveling to the site, locating the sensor, testing the device, and documenting the process increases the labor cost. It is believed that batteries have a good service life, but in reality, companies are often engaged in changing them within one or two years to avoid early failures.

Today, resource-saving and environmental protection are the top priority. The rising cost of copper, the presence of harmful components, and battery safety are some serious issues. Wireless energy harvesting sensors are the best solution that considers both the financial aspect and environmental protection.

In Process for The Industry:

Sensors play a key role in industrial production. They can be used for quality and process monitoring or condition-based maintenance. A wide range of applications is developing in the direction of an industrial Internet of Things (IIoT) with the increasing usage of wireless sensors. Integrating energy-saving radio with local energy converters,battery-free and maintenance-free sensors can be installed directly on moving parts or in hermetically-sealed environments. For instance, it can be implanted to know the position of moving parts, power consumption, temperature of moving parts, liquids, or gases.

Sensors in Quality Control:

Quality monitoring manages the entire production process and ensures the desired properties of the end product based on different parameters.

For this purpose, environmental factors like temperature, humidity, and air quality or process factors like position or temperature are monitored.

Automated monitoring systems require data generated by sensors; for this purpose, sensors must fit seamlessly into existing production processes. Additionally, they must not need special training or generate follow-up costs in the ongoing operation. Therefore the integration of self-powered and maintenance-free sensors provides benefits.

Condition-based Maintenance with Battery-free Sensors:

Besides products, machines also need proper monitoring to ensure a seamless production process. These are prone to high wear, so it would be best to identify problems as soon as possible and take appropriate actions to maintain continuous quality assurance and protection against production downtime.

A primary problem with maintenance planning is the calculation of the intervals between each maintenance cycle. Normally, the interval between two maintenance dates must be as short as possible to detect deviations before any mishappening occurs. Still, each maintenance involves high costs for personnel and idle machines.

It is often possible to derive valuable information by closely examining a few simple parameters. For instance, a temperature rise can indicate higher friction, thus resulting into wear. Wireless temperature sensors can be installed for measurement processes. Humidity sensors monitor water leakage to prevent water damage. Temperature and humidity sensors also inform about air conditions and guarantee good air quality. That is why wireless energy harvesting sensors are best for various industrial applications. They are low maintenance, flexible, and within budget to install.

That is why wireless energy harvesting sensors are ideal for various industrial applications. They are maintenance-free, flexible, and inexpensive to install – outstanding features for assuring high-quality standards and greater sustainability in the Industry 4.0 environment.

IoT in the Factory Building:

IoT allows significantly efficient, adaptable, and individualized production in manufacturing. Using sensors networked with a smart IoT platform, it is now possible to develop a digital twin, i.e., an exact virtual image of a machine throughout its entire life cycle. Digitalization is becoming a part of buildings and will revolutionize them by providing automated service processes in facility management, higher energy savings, and better individual well-being for users. One important thing for factory buildings and industrial processes is battery-free wireless sensors.

How will 5G Revolutionize the Healthcare Industry?

Today, we are advancing in terms of technologies, but using these latest technologies to their best, we need good internet connectivity. The journey from 2G to 4G has been incredible, and now we are switching to 5G and private networks. When 5G will dominate and cover most of the area in the coming years, what would be the possible changes in different industries?

Any idea?

Undoubtedly, 5G and private networks will hugely impact the future of the different sectors and industries, including healthcare.

Besides upgrading the wireless communication ecosystem, 5G will also enhance global innovation by integrating other latest technologies like edge computing or AI. The demand for more connectivity and data requirements will be addressed by 5G as it offers ultra-fast connections and gigantic bandwidth to boost companies’ efficiency and innovation skills.

Therefore, let us know how 5G will work and save lives by allowing faster response time, sharing patient information, and promising better data security.

Why do we need 5G in Healthcare?

Today, there are several issues faced by the connected healthcare solutions, like:

  • Data security issues because of wifi networks and legacy telecom technology.
  • Availability of Single-network SIMS and expensive roaming solutions.
  • Less accessibility to private 5G/LTE Networks.

Hence, 5G and private networks are most-demanded because of their capability to transfer data at much higher speeds while promising greater security. This will definitely offer countless possibilities within the healthcare ecosystem.

The top benefits of using 5G and private networks for healthcare include:

  • Reduced latency for more rapid communication between healthcare providers and patients.
  • Unmatched security to ensure that patient data stays secure (especially compared to wifi and Bluetooth alternatives).

Where is 5G Making an Influence?

5G is going to impact almost every sector, but five primary sectors that will be influenced by it are:

1: Wearables and Connected Medical Devices:

The wearables market is growing rapidly, and apparently, its adoption in Healthcare is the highest. These IoT-enabled smart devices support patients and healthcare providers monitor important biometric data and assure prompt emergency response time.

Some of the devices which are helping healthcare centers are:

  • Glucose monitoring devices
  • Cardiac monitoring devices
  • Fitness trackers
  • Smartwatches
2: Connected Emergency Services:

IoT-connected ambulances can be labeled as the future of emergency response. 5G empowers doctors and paramedics to cooperate in real-time even when they are at distant places. These smart ambulances offer more details about patients and their health history promptly than ever before; this plays a crucial role in changing how emergency services can be delivered.

3: Drone Delivery of Medical Supplies:

When the COVID-19 pandemic hit the world, paralyzing every section, drones were employed for remote virus testing and to deliver medical supplies. These drones were primarily used to support underserved societies worldwide, but 5G in Healthcare plays an important role in assuring these kinds of use cases stay connected in the future, particularly within cities.

4: Employee Panic Buttons:

Hospitals all over the world are taking advanced steps to ensure safety and peace within the campus. They are arming nurses with employee safety devices- “panic buttons” responding to news of hospital violence. 

Three in ten nurses who participated in a survey conducted on violence within hospitals shared that there is an increase in violence cases at their hospitals. These cases are the result of staff shortages and strict visitor restrictions. Panic buttons must remain connected; both 5G and private networks within hospitals can ensure these devices stay functional as they greatly support employees’ safety.

5: Hospital and Medical Campuses:

Demand for 5G and private networks in Healthcare is increasing day by day. Private LTE/5G Networks has improved security features, and many hospitals and medical premises can use these private networks to assure data security and HIPAA compliance. Private 5G/LTE networks are usually deployed as a replacement for wifi, which lacks enhanced security for transferring health and personal data over the Internet.

5G will transform Healthcare from head to toe:

The intrusion of the COVID-19 pandemic made us realize the importance of the connected healthcare industry and showed us how the latest technologies could evolve healthcare. It also emphasized the importance of monitoring and treating patients from remote areas using virtual connections.

5G will surely revolutionize every aspect of healthcare, from wearables to emergency services, from supply chain optimization to remote diagnostics to electronic medical records management, from panic buttons to drones, hospitals, and medical campuses.

As per the report on 5G in Healthcare, PwC shared that it is not expecting extensive use until 2025 in many markets. When widespread deployment happens, PwC predicts 5G-compatible devices being utilized to monitor bed occupancy levels, the movement of physicians, nurses, and patients around the hospital premises, and wearable medical devices. So, we can conclude that by reducing latency, improving reliability, and boosting security, new healthcare use cases will benefit from the availability of 5G and private networks.

How will IoT Build a Bright World with Connected Devices

How will IoT Build a Bright World with Connected Devices?

Internet of Things is now no new word for the tech world. Studies show that the number of connected devices will reach more than 75 billion by 2025, implying that there will be possibly nine connected devices for every human on earth.

The pace at which IoT technology is striking every area of our lives is impressive, but how it has transformed our day-to-day work is beyond imagination.

But what is IoT?

In simple words, it is the practice of connecting different physical assets through the internet, providing control and measurement access from the remote area while saving users money and time. Today one can set the temperature of the air conditioner while on the way home, brew coffee and efficiently manage the use of lights in the home. Products like Amazon’s Alexa and Apple’s Siri can interact and provide information as required.

Let us know how various industries are embracing the presence of the Internet of Things and the impact of this latest technology.

IoT in the manufacturing sector:

The impact of Industrial IoT technology is already visible in the output of the manufacturing industry, especially in measuring energy and asset efficiency throughout the production line.

IoT technology has provided an effective way to connect and modernize legacy assets. Using connective sensors, businesses can accumulate critical production data and use cloud software to turn this data into useful insights to know about the efficiency of their manufacturing process. But what kind of assets? It can be anything used within the manufacturing process, from its HVAC or CNC machines to products like refrigerators or lighting rings, etc.

IoT can assist by providing a clearer picture of the working of assets individually and collectively, chartering better ways for monitoring, automation, and predictive maintenance. For instance, Industrial IoT in action has enabled us to gain insight into energy consumption and the health condition of the asset. This technology even allows us to schedule maintenance by informing us about the future condition of the asset.

Employing and integrating IoT in the existing process reduces costly downtime, improves assets, and reduces energy costs.

IoT in the retail sector:

Retail sectors are already using IoT in different innovative ways. One of the key areas is tracking energy consumption not at one store but all the stores present in the entire region or at the national level.

The IoT system can also be used to know which stores are using high energy in lighting or heating; in-store sensors allow us to track energy usage at a more granular level.

Other than this, IoT is also used to optimize store experiences. It is now possible to know the interest area of the shoppers, where they are spending most of the time. This helps retailers improve their stores’ layout to reduce congestion, increase stay time and boost sales. We can say that IoT technology and its different uses are building the ‘high streets of the future.

IoT in the construction sector:

Internet of Things is also contributing to making the construction sector smarter. Smart buildings are one of the most loved concepts possible by IoT. Using IoT and integrated sensors to know the air quality of the site or the surrounding area, such as parks and schools, is one of the key usages.

IoT in construction areas allows construction managers to accurately assess the real-time effect of their work on air quality. IoT in construction also ensures the safety of construction workers and nearby people.

IoT in the agriculture Sector:

The increasing population shows that we will need more food production in the coming year. UN has also estimated that we will need to produce 70% more food to meet the global demand by 2050. Internet of Things will help this sector overcome the looming food shortage challenge by reducing food wastage and increasing yield.

Supervising and tracking workers, machine efficiency, crop and livestock health, and predicting weather are some of the ways through which IoT promises to boost productivity with minimum wastage. Employment of agriculture drones and smart agriculture sensors are already helping agriculture workers by providing real-time production data. Besides this, sensors to track important atmospheric aspects like light, humidity, temperature, air quality, and soil aspects like soil moisture, nutrition, etc., contribute to better yield. This has automated the tasks which involved manual and human interference. Thus, saving labor costs and time as well.

Another way through which IoT is helping agriculture farmers is by providing predictive analytics through better quality data. Using data, farmers can estimate the yield and make better storage plans to keep the produce after harvesting.

IoT in smart cities:

Well, IoT in urban areas has been very influential. People are enjoying the leverages provided by IoT like smart houses, smart street lights, or smart bottles. IoT has occupied an important place in the planning and management of cities. Many countries are using IoT for waste management, traffic control, and public transport systems.

Using IoT, it is now possible to know the number of people in transit at a particular time and opt for a better route to avoid congestion. In cities where flooding is a serious concern, IoT can be used to track the real-time water level in the river. The flood defense system starts when the water level increases and helps mitigate the risk.

We’re on the way to a smart connected world:

IoT has successfully infiltered in major sectors contributing to the economy’s growth. Today, if we look around, we’ll observe that everything is getting smart and automated. All thanks go to IoT for making life more hassle-free and productive. However, some areas are still untouched by the magic of IoT, but it is predicted that it will be covered soon in the coming years. It is estimated that global expenditure on IoT will be around $1,100 billion (€1060.02 billion) in 2023, almost double 2018 $646 billion (€622.52 billion).

This shows that IoT will continue to reform the industries making them more profit-oriented without compromising quality. Hence, we can conclude that high-quality data can help make anything prompt, cheap, and more efficient with less waste.

How will IoT Make Building Smart and Greener

How will IoT Make Building Smart and Greener?

Smart building technology is becoming a new fashion, fuelled by a global need for better sustainability, reduced waste, and optimal use of resources.

Smart buildings are accessorized with technological advancements of the latest technology, i.e., the Internet of Things, to manage resources, assets, and services effectively, boosting building operations, energy consumption and resource management, and overall resident experience.

Today, buildings are responsible for around 38 percent of global CO2 emissions and 40 percent of U.S. energy consumption; therefore, remodeling buildings’ energy consumption and sustainability are vital to meeting global climate goals.

To adapt this remodeling has already been made clear by U.S. President Biden’s administration, who informed the Buildings Performance Standards Coalition in January. It will be a first-of-its-kind partnership between 33 states and local governments working hard to deliver cleaner, healthier, and more energy-efficient buildings.

The process of optimizing energy consumption in the building sector is a gigantic undertaking; it can begin at the smallest level, i.e., from the tiny chips that power the IoT.

Smart buildings integrate IoT technology into many areas- from digitizing people’s flow and space usage to reconstructing water supply networks. One of the biggest prospects for smart buildings is revolutionizing energy consumption, beginning with smart energy distribution systems and smart HVAC equipment.

Smart Energy Distribution Systems:

Traditional energy distribution systems are positioned in a unidirectional fashion in which energy is expected to flow from generators into loads. 

Usually, power plants generate energy and collect it in the urban centers of these systems.

The introduction and utilization of renewable energy sources like solar and wind have changed the picture of the energy distribution as the energy distribution system has to permit omnidirectional energy flow. A building that consumed energy could now integrate rooftop solar panels to produce and return excess energy into the grid.

Smart energy allocation systems authorize this omnidirectional energy flow and facilitate the integration of renewable distributed energies to collect energy back into the power grid. This whole system reduces energy consumption by enhancing the system’s efficiency and even uncloses a distributed energy generation model. Buildings are becoming energy producers and giving up their earlier character that is consuming energy, ultimately shifting towards green energy.

Advanced sensors and wireless IoT technologies are laying the foundation for smart energy grid transformation, where smart buildings play a pivotal role in fostering a greener, more connected power grid to shape a more sustainable future.

Smart HVAC Systems:

Smart HVAC systems are exciting evolution in smart buildings, which provides energy efficiency, air quality, and resident comfort. With the hit of the COVID-19 pandemic, vendors are looking at a shortened HVAC upgrade cycle. Dealers and distributors are integrating their HVAC systems with new and smart technologies. Today, when everything is shaping into a smart version, building residents are now expecting granular control of HVAC settings in each room and area of their building. In this situation, IoT is a savior as it adds a new level to the comfort experience inside the buildings.

Motorized vents and dampers integrated with wireless connectivity to phones and tablets allow residents to set the temperature and the CO2, humidity, and air quality. Building managers can also benefit from IoT connectivity to know the room occupancy, reduce energy usage, and optimize energy use throughout the premises.

Monitoring Building Health:

Monitoring building health is another important aspect of smart building growth areas. More environmental sensors are being added to buildings beyond traditional temperature and humidity. These sensors control smart dampers for better airflow and outdoor air exchange, manage connected equipment for predictive maintenance to avoid equipment failure, flow meters for real-time leak detection, gas sensors to detect air particles, and many other things.

We are already familiar with connected fire and smoke detection sensors, but with the addition of the latest technology, we can witness more wireless connectivity with long-range wireless and Bluetooth to develop an installer interface.

All three major applications, i.e., energy management, fire safety, and building health monitoring add more connectivity and digital capability.

The Importance of Reliability and Cybersecurity:

Well, aside from the great benefits offered by smart building, there are some challenges faced by smart building to be dealt with with skilled engineering.

The first challenge is technological: wireless networks of such complex systems should be reliable and stable. Though wireless mesh network technology is highly adept, vendors and manufacturers are required to ensure the reliability of their products to estimate the true potential of wireless networks in building environments.

Integrating wireless networks makes buildings vulnerable to cyber attacks. Silicon vendors and product manufacturers have stepped up their cybersecurity game to combat such threats. Uncompromised efforts and constant focus on security while developing and distributing smart solutions will be highly helpful in transforming the building sector.

A Smarter, Greener Future:

The best part about smart buildings is that they are not limited to just brand new structures; these buildings can be retrofitted with smart technology as well. Implementing wireless connectivity in existing systems allows for smooth adoption and speeds up the adoption of wireless communications in buildings.

The initiation of both public and private sectors to improve energy use in the building sector signifies that the coming years will be the era of smart building adoption. Today, when it has become important to reduce CO2 emissions in all sectors and maximize energy efficiency and consumption, the employment of the latest technology and the use of IoT in buildings can charter the way to sustainability and improve the quality of life for individuals and group level.

How are Wearables Improving the Connected World Concept

How are Wearables Improving the “Connected World” Concept?

Today, if we look around, we can easily sense that we live in a connected world ruled by sensing technology and intelligent devices. Every organization is attempting to climb the connected ladder between brands and customers to launch the most efficient and innovative product in the market. Few Research Centre took a survey and shared that wearable is the most popular smart device as one in five Americans owns it. 

Wearables are changing the way of communication, monitoring and sharing information between consumers. They are playing a pivotal role in progressing the concept “connected world” we are living in. Even after having many desirable features, the overall wearable market has not hit dynamic market growth as analysts predicted. 

Ericsson shared that almost 1 in 10 wearable users no longer use their wearable devices, and one-third have already abandoned them after a couple of weeks. The main reason behind this unpredictable behaviour is that consumers do not know what they need. 

For lifestyle purposes or health reasons, customers try wearables as an experiment or eagerness and forget about it if they are unimpressed by the inadequate functionality of the connected device. On the other hand, instead of investigating the customer’s requirements or addressing customers’ needs, brands are just throwing products out to the market to know what functionality is beneficial and marketable. 

One of America’s renowned multinational technology and e-commerce companies recently announced a catalogue of half a dozen different smart wearable products.

Based on the people’s curiosity and past experiences, researchers still conclude that wearables could make their place in the market. International brands are aggressively working to produce wearables that can stick in the market. 

The COVID-19 pandemic hit has also caused a significant impact on the wearables market. Gartner shared about the shift in the choices of people amid COVID. In 2020 wearable market saw a momentary push in heath wearables which concluded that customers and vendors are more interested in health-focused wearables. 

Therefore it is pretty clear that niche products do not meet customer needs. Consumers are looking for multi functionalities in a device or say “all-in-one” wearables are winners. But to develop such wearables, there is a need for more functionality, low energy consuming sensors and other latest technologies.

Sensing the Wearable demand

IDC predicts that there would be over 55 billion connected devices globally by 2025. This implies that every person on earth would own seven or more connected devices. The entire design should have the right factor, along with portability and user-friendliness. At the heart of this design are embedded sensors. 

From consumer wearables that support a healthier lifestyle to medical wearables that help decide a patient’s vital signs by sensing components promptly are some of the advanced help these technologies offer to lives, consumers enjoy the safety, productivity, and health incentives. 

The embedded sensors allow complex interaction between people and devices, enhancing the user experience to make daily interactions with smart technology more comfortable and natural. These sensors make it feel like the devices around us intuitively understand what we want them to do. Important needs of embedded sensor technology for connected devices are small size and low-power consumption and overall ease of ‘wearability’ for added comfort and functionality.

Small and low energy consuming sensors offer the best way of tracking a person’s health, physical activity, exercise; RF components assure the best connectivity and location determination, and wireless charging makes everyday life much simple, and it is almost as if the devices “charge themselves.” 

The most crucial feature of sensor technology is to make our lives more convenient through seamless, simple interactions between people and sensing devices so that users can emphasize their other essential works.  

It is evident that with an advance in wearable industries, there will be a requirement for more accurate, reliable and compact sensing technologies for long-term functionality in wearables. 

Functionality comes with Challenges

Consumers expect “all-in-one” smart devices, and wearable devices are moving towards that. From texting to calling, timekeeping to vital monitoring is becoming part of today’s wearables. However, adopting this “new standard” carries challenges and issues with wearable battery life and power management structure.

No doubt, it is tough to compact multiple sensors for capabilities into a thin, small and lightweight device. The addition of new functionality drags a challenge of power management.

Ways to overcome efficiency issues include:

  • By transferring data wirelessly by using LoRa, NB-IoT, etc.
  • Unloading high power functions to solutions like Bluetooth Low Energy (BLE).
  • Selecting an effective microcontroller (MCU) for power management purposes to reduce power consumption – especially when the device is not in use.
  • Utilizing pin-type charging or wireless charging rather than a USB plug-in connection.
  • Improving overall sensor technology.

Wireless power is becoming part of a multifaceted world of small things. Designers demand a highly integrated semiconductor solution with minimum loss rates, robust performance, and outstanding linearity.

Boosting Battery Technology

Battery life is the most significant barrier to the growth of wearable tech today. Smart wearable devices need efficacious power management to run many various functionalities at once. Customers demand batteries that last for a long time and are easy to recharge. Most wearables have lithium-ion (Li-ion) or Lithium-ion polymer (Li-poly) batteries; these conventional batteries only fit basic on-functionality wearables with simple sensors and low power capabilities. They are unable to keep up with the demand of adding more functionality to a single device.

In the end, it’s the solution that is evaluated no matter which battery is installed in it. Semiconductor companies are endeavouring to address this need for new battery alternatives by designing battery management technologies, especially for wearables, instead of new battery technology.

What About Security?

Tracking health and location details, collecting personal and contactless payment information are some of the uses of wearables in daily life. Wearables are immensely collecting sensitive user data, causing security issues to the forefront, especially IoT security.

As per the report shared by Nokia’s Threat Intelligence, the percentage of IoT infections increased by 100%in 2020 and IoT devices make up 32.7% of the total infected devices now.

Wearables are an extension of the user’s smartphone; both devices create a significant security risk for the customer and connected wireless network if not secured properly. If a wearable or mobile phone is connected to a public network, it could be at high risk of valuable information piracy if the security infrastructure is not updated. It could be a great chance for hackers.  

Currently, there is not enough space to improve security measures in wearables due to their small form factor. However, manufacturers are adding two-factor authentication, facial recognition, active sensing, and fingerprint sensing to shield wearables from end to end thoroughly to maintain security. 

Safe, guarded, and efficient high-value semiconductor components will support IoT in the connected world.

IoT Connectivity Future

Wearables will speed up the merge of the digital and physical world. PwC highlights that wearable technology has just started influencing enterprises; in the coming future, semiconductor companies will lead this enterprise charge by delivering a better and high-value semiconductor for the fast-growing IoT application. With the availability and integration of more intelligent technology like artificial intelligence, connected devices will become more automatic, providing a world where our devices take better care of us.