post-header

Key Factors to Consider for Cellular Connectivity in IoT Product Design

The Internet of Things, which had just a few applications before, is now part of almost every sector. Beginning from a smart bottle to a smart home, from smart buildings to smart towns, IoT has impacted every sector and will continue to do it. The integration of other technologies with IoT is also churning incredible results. Sectors, not part of it till now, are planning to embrace it with full potential.

IoT is diverse today, with a broad range of devices and applications connected with cellular connectivity solutions. By exploring various factors, product designers can possibly make the best connectivity options that suit the IoT solution.

This way, they are able to optimize the live operations of devices after they are deployed. Flexible connectivity is best for many installations, and to enhance this, the eSIM, wherever it is relevant, can support making the product more agile.

What aspects to keep in mind while considering cellular connectivity

Getting the proper cellular connectivity for IoT devices is crucial; otherwise, the whole purpose will be negotiated, leading to minimum output.

While designing for the IoT, one should consider the following aspects:

  • Device: The first thing to consider is the device because its deployment characteristics impact the choice of cellular connectivity. The aspects to consider are the lifespan of the device and the amount of power it requires to stay deployed. Mass deployments in remote areas, at the global level, or expansive locations require continuous power as they will likely stay in position for an extended time. 
  • Data: The second thing to consider is data- what type and amount of data will the device need to exchange? The device may send only a tiny amount of data or need higher bandwidth to exchange videos. It is essential to consider how the device application may develop over time, for instance, from sending audio files to adding video. It does not matter what data or volume is being transferred; the connectivity should be secure because mass IoT deployments offer a large attack surface with constant risk. Therefore, it is vital to consider data value and multi-network resilience. 
  • Distribution: If we talk about distribution, then we can simply say that it is a crucial consideration because network options and commercial arrangements will differ for national, regional, and international deployments. Having a single stock-keeping unit (SKU) for devices is always the best option, but that may not be feasible if devices targeted for different markets have different SIMs. In such cases, region-specific SIMs are to be implanted when devices reach their destinations for late-stage connectivity.
  • Coverage: This concerns the wireless technology which is used to connect devices. Low power wide area networks (LPWAN) (NB-IoT and LTE-M) are in favor, but their global coverage is quite in demand, and even at a national level, there are gaps. Make sure that your device has coverage and that there is no possibility you’ll need to deploy to countries with no LPWAN.

The phasing out of 2G and 3G

Many IoT applications were designed to connect over 2G and 3G. These networks are now being phased out; if we take the case of 3G, then switch-off has already occurred in many regions or is being listed in the to-do list in coming years. The main reason behind all this is that mobile network operators (MNOs) are trying to free up the spectrum for next-generation, cost-efficient, and better revenue-generating technologies. Most companies that use 3G for connecting IoT deployment will hold no place in their migration plans. 

But in the case of 2G, everything is slightly different as this technology has been entrenched in large deployments of IoT devices and machine-to-machine (M2M), especially across Europe. Therefore, there is a high chance that 2G will not be disrupted in many countries until the end of the decade. While this might sound like a far-off thing, future planning is critical for devices deployed for many years. 

There are 2G/3G connectivity options, each with its own features. These should be evaluated to assess their suitability for a new IoT device in design:

NB-IoT

This is the best solution for stationary IoT devices that share small amounts of non-real-time data, are solar or battery-powered, and are located where other technologies would not be able to get a signal. NB-IoT provides low hardware and operating cost, making long-term mass deployment viable. It is battery effective and can support devices that stay in the field for a long, like sensors with low and intermittent data. It also has full signal penetration, the most profound reach of any low LPWAN, and can cope with basements or underground car parking even if sensors are installed below street level.

  • LTE-M (Cat-M1): This provides the powerful throughput speed and bandwidth of any LPWAN technology to manage the over-the-air (OTA) updates of the future. It also sustains a wide range of IoT applications but is best for low-power devices that need higher speed or two-way data transfer, like those supporting SMS or voice services. It can be used for both mobiles as well as stationary devices, as it allows cell yo cell roaming. However, as already mentioned, some deployments would need help with either NB-IoT or LTE-M for the coverage causes. Today, neither LTW-M nor NB-IoT is available on 4G, and NB-IoT is currently not supporting eSIM.

In cases where these limitations make LPWAN useless, companies can consider the following:

  • LTE Cat-1 and Cat-1 BIS: LTE Cat-1 (Cat-1 BIS being the single antenna version) is a grown technology. Hardware costs and power consumption are pretty high in comparison with LTE-M and NB-IoT, but for some usage, the advantages will overshadow this issue. It receives global support as Cat-1 is a standard 4G technology, and traditional roaming agreements mean global network access is possible using a single SIM SKU. It is appropriate for mobile applications and goes well with eSIM also. Lower latency and increased bandwidth make Cat-1 a better option for 2G/3G and sustain a wide range of IoT applications. It fits nicely for low-power IoT devices that need high-speed and two-way data sharing or mobility. It also has a three-to-five-year battery life or application that uses rechargeable batteries.

eSIM adoption is already in process, and it is anticipated to be adopted within smartphones, enterprise IoT, and the wearables markets, with integrated iSIM technology following 2025.

As per research conducted by Counterpoint, it is estimated that shipments of eSIM-based devices will cover almost two billion units by the end of 2025 from 364 million in 2019. The report also shared that most eSIM-based devices will have a hardware chip-based eSIM solution until 2025.

eSIM for flexible connectivity

eSIM is one of the best technology, known for its flexibility, and also supports OTA provisioning of network operator credentials. This implies that the same SIM can be used in each device irrespective of where they go, as connectivity can be provisioned later. It delivers the single SKU essential for operational simplicity, particularly for large international IoT deployments. This makes manufacturing more uncomplicated and more streamlined, and connectivity uses local networks at local rates.

Additionally, eSIM allows in-life network operator changes without needing to swap out SIM cards physically. Through this, companies can leverage new commercial arrangements and attractive deals.

There are a few points to be taken care of while designing IoT devices with cellular connectivity. First, the device themselves, the data they will share, and the targeted areas where they will be used. These aspects will be crucial in determining the right cellular connectivity choice.

The second point to consider is that network technologies will not exist forever, as companies who have already done or are in the process of migration from 2G and 3G will understand. Hence the lifespan of the technology is another factor to be kept in mind.

The benefit of some technologies is their flexibility – the eSIM, wherever possible, brings agility to IoT deployments. In all, an IoT connectivity platform provider can help in determining optimal cellular connectivity for each IoT use case. To enjoy the leverages provided by the IoT system, one should never ignore the importance of cellular connectivity and whether the device is compatible with it or not.

By embracing an intelligent approach to connectivity and choosing an IoT connectivity partner that comprehends the potential eSIM brings but also understands the importance of managing different use cases in different countries in different ways, IoT organizations should ensure that they can provide optimized IoT connectivity continuously. Different countries follow different regulations; like Brazil does not allow permanent roaming for IoT devices, they can connect by using a local carrier only. Thus, the case of keeping connectivity streamlined and seamless just by having a single connectivity platform from one provider is attractive. The platform provider can handle all the changes and manage all the integration. Apart from this, deals of this type protect the customer organization from changes like geo-political changes that might compel an individual organization to reconsider its connectivity provision.

Leave a Reply

Your email address will not be published. Required fields are marked *