Smart Devices

How IoT supports Electric Vehicle Charging and Keeps EVs Running

How IoT supports Electric Vehicle Charging and Keeps EVs Running

The evolution in the vehicle industry is remarkable. The increasing vehicle demand is not just consuming natural crude oil but also giving pollution as its by-product. The increasing temperature of the earth is significantly impacting the lives of humans as well as animals. This menace is not just limited to living organisms but also disturbs the climate and ecology. 

With the emerging need to control the increasing pollution and make a drive more comfortable and safe, the addition of electronic vehicles is applaudable. Today, Electronic vehicles that are EVs have taken an ambitious place in many car manufacturing companies, proudly joined by Tesla, which is launching all-electric models. Electronic Vehicles are the need of the hour. 

With this remarkable evolution and acceptance by the crowd, there is an inevitable demand to have a solution to keep these cars charged outside of a home. 

Besides supplying the electricity to charge an electronic vehicle, electric vehicle charging stations provide a wealth of information to owners, operators, and drivers. The credit for these things goes to the Internet of Things and cellular connectivity.

Electric cars parking and charging lot.
Electric cars parking and charging lot

The futuristic IoT Charging Stations: Charging EVs

An Electronic Vehicle charging station is connected to IoT and offers numerous benefits to the operator and consumer. If we take up the consumer’s perspective, there is a lot of information and knowledge one needs to acquire, like the location of the charging stations installed on the way. How much time will it take to get the EV charged fully? How much will it cost? These are sets of questions that EV charging stations can answer. And often, these stations have facilities to pay directly from a mobile app because of IoT, making things convenient for EV owners. 

And if we take the operator’s side, IoT enables operators to achieve critical information about each EV charging station without physically visiting the station. It informs the operator about how often it is being used to alert for the upcoming maintenance required or failure of the machine. All of this information can improve efficiency, which, ultimately, helps in improving ROI. It helps in scheduling preventative maintenance or decreasing on-site time with the devices.

However, we are still living in the initial days of EVs, and we anticipate improvement in adoption and innovation with the government’s recent push to spend on climate change initiatives. 

Inflation Reduction Act: Funding in Climate Change

The Inflation Reduction Act has become a topic for discussion this summer. This broad proposition was created to encounter inflation, bargain prescription drug prices, and extend the developed Affordable Care Act program for three years. It invests in manufacturing, domestic energy production, and lowering carbon emissions.

The Energy Security and Climate Change Investments in the Inflation Reduction Act aimed to control energy usage, and positioned the U.S. on the route to minimize carbon emissions approx 40 percent by the end of 2030. This bill targeting the reduction in carbon emissions holds many vital aspects, including reducing energy costs for citizens, increasing energy security, attracting more investment for decarbonizing all sectors of the economy, funding disadvantaged or remote communities, and supporting resilient rural communities.

Inflation Reduction Act: Helping EV Growth

Compared to vehicles that run on natural gas or diesel/petrol, Electronic vehicle causes less environmental impact. It has been proven to be a better option that not just solves the traveling issue but also helps in saving the environment.

Everyone in the industry, either its manufacturers who build EVs or the consumers who enjoy the drive, can leverage the benefit. The benefit offered by Electronic Vehicle also includes:

  • Up to$10 a billion investment tax credit to develop clean technology manufacturing facilities, including those companies that manufacture electric vehicles, wind turbines, and solar panels.
  • Almost $2 billion in assistance to retool existing auto manufacturing structures to manufacture clean vehicles.
  • Up to $20 billion in loans to construct new clean vehicle manufacturing buildings across the country.
  • Govt is providing tax credits and assistance for clean fuels and commercial vehicles to decrease emissions from all parts of the transportation sector.
  • Almost $1 billion for promoting clean heavy-duty vehicles.

The Inevitable Demand for Connectivity

The development of IoT and its endless potential has changed the outlook of the entire world. From smart towns to smart streets, smart hospitals to smart homes, smart tv to smart bottles, IoT has leveled up the world and improved efficiency. The addition of IoT in almost all sectors, including electronic vehicles, has changed the working process while improving user experience.

The collaboration of IoT with Electronic Vehicles also marks that IoT holds the potential to save the environment and ecology; we just need to work more on this technology and exploit it to its full potential. In the coming year, we can expect more innovative solutions that will improve the service quality and also promise to stay environmentally friendly.

However, the introduction of electronic vehicles and the addition of IoT will indeed require more investment and evolvement. There are some challenges that need to be addressed. The extensive spending on clean vehicles will also drive the need for more connected charging stations across the country to support consumers, operators, and commercial vehicles. Electric vehicle charging stations driven by IoT will shortly become essential and significant support for all EVs.

Nevertheless, EVs will be the lifeline of the future transportation system, and IoT, along with other technologies like Artificial Intelligence and Cloud, will become its spinal cord. 

Skills and Apps Needed for IoT Mobile App Developers

What are Skills and Apps Needed for IoT Mobile App Development?

Nowadays, it is quite apparent that most of the Internet of Things that is IoT solutions or services are dependent on mobile applications. If we look around, we’ll find that either for industrial or consumer or commercial use cases, mobile applications are important user interfaces to interact, configure and control connected devices or digital services in an IoT system.

Many traditional mobile application development companies share that they are ready to embrace IoT but add that creating IoT applications requires much effort and expertise.

Suppose a traditional app development includes IoT as just one of their mobile capabilities. In that case, it should be considered a warning flag because IoT requires knowledge and expertise, which comes with focusing on IoT over a long time.

What are Important Mobile App Skills for IoT Developers?

Bluetooth Low Energy:

Bluetooth Low Energy enables smartphones to connect directly to IoT devices like sensors, smart appliances, and others. This allows mobile apps to perform works like collecting data from the devices or controlling or configuring the behavior, provision network credentials and updating the device’s software, and many other things.

This BLE is based on the same radio technology as traditional Bluetooth but consumes less power. This feature makes BLE the best for battery-powered IoT applications that do not send or receive a large amount of data. BLE provides support for modern smartphones. It is especially useful in providing network credentials, like sharing wifi SSIDs and passwords to an IoT device. The important point is to do this securely, mandating know-how beyond the basics.

Besides this, working with BLE demands knowing the communication protocols and unique behaviors of the IoT devices. This implies knowing how to troubleshoot the problems and debug issues. Other than this, it also demands experience working with the embedded microcontroller systems that power most devices. The traditional mobile app firms often do not get this type of experience. Pertinent details of the nuances of BLE in different mobile application frameworks like React Native, iOS, and Android environment is also important. Every framework or environment works differently.

Zero-Configuration Networking:

Zero-configuration or Zeroconf is another way smartphones can detect and interact with nearby devices. This system is less used than BLE for this purpose but is often employed for communicating with devices connected to the smartphone’s local wifi network. There are different protocols available that permit the mobile app to discover devices present in the network without needing any special network configuration. Therefore, these protocols are altogether known as Zero-Configuration Networking. These protocols consist of MultiCast DNS (MDNS) and Apple Bonjour.

Smartphones transfer different messages on the network to detect specific device types. The devices supporting the protocol will react with their service name and IP address. This allows the smartphone to develop a direct connection with the device. It is important to have skills and experience with networking and embedded devices for implementing Zeroconf networking.

IoT Cloud Service Integration:

Most of the IoT mobile apps integrate with IoT cloud services. This integration to digital services operating in the cloud allows users to communicate with the devices even when they are not in the range. It also allows users to get useful insights from IoT system data. 

Cloud service providers offer many software solutions for IoT systems that can do things like route messages, process events, index devices, and aggregate data. Mobile apps interact with these services. 

Often, mobile apps for IoT communicate with custom cloud APIs to streamline the interaction between the cloud services and mobile applications. Having experience with REST API and HTTPS is important, and for IoT applications, knowing MQTT and GraphQL. 

Executing good security protection is crucial when connecting to cloud services. To establish this, it needs expertise in methods for authenticating user accounts and setting up access protocols. The entire system ensures that the right users and systems access the right resources, not others. Establishing good security is not a small task and demands precise knowledge of the IoT system and its implementations. Therefore, mobile app developers holding loud experience, specifically IoT-oriented cloud services and patterns, are highly useful for developing great mobile apps for IoT. Holding a good connection with multiple cloud service providers and their capabilities and subtleties add a lot of worth. This also helps select the most optimal services and their providers for specific purposes.

Interfacing with IoT Devices:

IoT system connects the physical devices using networks to digital services and user interfaces. To perform the functions, physical devices have computing capabilities embedded inside them. These small compute consist of external interfaces to get sensor measurements, drive the display, store data, etc. We already discussed that mobile apps often connect to IoT devices over BLE, but the data shared over BLE varies by device type. The way data is collected and sent over BLE depends on the firmware operating in the device. The data available could be in any format, including binary. To exploit this data and debug any issues when they come up, it is important to know decoding, encoding, serialization, and bitwise operations.

Knowing how the IoT device works is important to understand the data needs. This may need reading datasheets and specification documents and reviewing the embedded firmware. Having information about embedded systems mobile makes this process seamless and more efficient.

Security:

IoT systems run on networks and manage important and private data. Therefore, they become the target of attacks from cyber criminals, security researchers, and others. Hence, IoT systems should have good security measures to safeguard the products and brands. 

Authentication of users and devices is an important part. Mobile apps should ensure that users trying to log in are valid and even detect invalid users. Depending on the account, the user should have unique permissions and data access policies. Along with this, mobile apps also need to ensure that any device a user attempt to connect to is authentic and has not been tempered. This is only possible using cryptographically signed software and digital certificates. The data shared between devices and mobile apps should be encrypted. Mobile apps play an important role in updating the firmware of the specific connected devices they are developed to support. This requires securely downloading firmware files, verifying them, and transferring them over the device. To create such systems, it is important to have end-to-end security knowledge. Experience with data access policies and Over-the-Air firmware updates with cryptographically signed firmware is also important.

Cross Platform Development:

Well, there is no need to put effort twice and write two apps when you can have one? Earlier, there was a need to develop two separate applications for Android and iOS.

However, today there are cross-platform development frameworks that serve both. This implies that a single development project can offer mobile applications for both Android and iOS. It has been found that cross-platform development frameworks like React Native and Flutter can provide excellent results in minimum time. These frameworks permit developers to write code in a single language and render applications in native code. The native code varies between Android versus iOS. This means there is no difference in the performance. The final mobile apps perform well and provide the look and feel that Android or iOS users expect. These frameworks have been employed in thousands of web applications and mobile applications. Using a common framework for web and mobile applications adds many advantages to the consistency of user experience.

Mobile App Architecture for IoT:

Mobile apps for IoT should look great and operate flawlessly. The best people to develop the user interfaces must necessarily be the developers with a good grip on core functionality.

Suppose a company delivers the core IoT capabilities for an app inside a bundle of software that partner companies or customers can use within the mobile application. This enables them to focus on developing a seamless user experience without considering the complexities of the IoT features underneath. Your developer should pack the core IoT capabilities into mobile software development kits that can summarize all the IoT complexity into a compilation of software that reveals clear APIs to other mobile app developers.

These SDKs, i.e., software development kits, have APIs for cloud connectivity, device data access, account management, etc. This allows mobile developers to have less IoT complexities experience and access to the IoT APIs to prioritize the application’s user-facing features.

Summary

These are a few reasons advocating Mobile Apps for IoT are unique and require unique skills to develop. These consist of IoT-specific mobile app development features like BLE and the cross-domain experience like cloud and embedded.

If you wish to add great IoT experiences for customers, collaborate with a company with a forte in IoT development and implementation. Connecting with an experienced mobile app development company can improve your business and provide a greater user experience. IoT is the next-gen technology with the only objective of simplifying the existing complex system. It also ensures that customers don’t struggle while using apps or services, and on the other hand, it saves time and cost for the service providers.

How are Wearables Improving the Connected World Concept

How are Wearables Improving the “Connected World” Concept?

Today, if we look around, we can easily sense that we live in a connected world ruled by sensing technology and intelligent devices. Every organization is attempting to climb the connected ladder between brands and customers to launch the most efficient and innovative product in the market. Few Research Centre took a survey and shared that wearable is the most popular smart device as one in five Americans owns it. 

Wearables are changing the way of communication, monitoring and sharing information between consumers. They are playing a pivotal role in progressing the concept “connected world” we are living in. Even after having many desirable features, the overall wearable market has not hit dynamic market growth as analysts predicted. 

Ericsson shared that almost 1 in 10 wearable users no longer use their wearable devices, and one-third have already abandoned them after a couple of weeks. The main reason behind this unpredictable behaviour is that consumers do not know what they need. 

For lifestyle purposes or health reasons, customers try wearables as an experiment or eagerness and forget about it if they are unimpressed by the inadequate functionality of the connected device. On the other hand, instead of investigating the customer’s requirements or addressing customers’ needs, brands are just throwing products out to the market to know what functionality is beneficial and marketable. 

One of America’s renowned multinational technology and e-commerce companies recently announced a catalogue of half a dozen different smart wearable products.

Based on the people’s curiosity and past experiences, researchers still conclude that wearables could make their place in the market. International brands are aggressively working to produce wearables that can stick in the market. 

The COVID-19 pandemic hit has also caused a significant impact on the wearables market. Gartner shared about the shift in the choices of people amid COVID. In 2020 wearable market saw a momentary push in heath wearables which concluded that customers and vendors are more interested in health-focused wearables. 

Therefore it is pretty clear that niche products do not meet customer needs. Consumers are looking for multi functionalities in a device or say “all-in-one” wearables are winners. But to develop such wearables, there is a need for more functionality, low energy consuming sensors and other latest technologies.

Sensing the Wearable demand

IDC predicts that there would be over 55 billion connected devices globally by 2025. This implies that every person on earth would own seven or more connected devices. The entire design should have the right factor, along with portability and user-friendliness. At the heart of this design are embedded sensors. 

From consumer wearables that support a healthier lifestyle to medical wearables that help decide a patient’s vital signs by sensing components promptly are some of the advanced help these technologies offer to lives, consumers enjoy the safety, productivity, and health incentives. 

The embedded sensors allow complex interaction between people and devices, enhancing the user experience to make daily interactions with smart technology more comfortable and natural. These sensors make it feel like the devices around us intuitively understand what we want them to do. Important needs of embedded sensor technology for connected devices are small size and low-power consumption and overall ease of ‘wearability’ for added comfort and functionality.

Small and low energy consuming sensors offer the best way of tracking a person’s health, physical activity, exercise; RF components assure the best connectivity and location determination, and wireless charging makes everyday life much simple, and it is almost as if the devices “charge themselves.” 

The most crucial feature of sensor technology is to make our lives more convenient through seamless, simple interactions between people and sensing devices so that users can emphasize their other essential works.  

It is evident that with an advance in wearable industries, there will be a requirement for more accurate, reliable and compact sensing technologies for long-term functionality in wearables. 

Functionality comes with Challenges

Consumers expect “all-in-one” smart devices, and wearable devices are moving towards that. From texting to calling, timekeeping to vital monitoring is becoming part of today’s wearables. However, adopting this “new standard” carries challenges and issues with wearable battery life and power management structure.

No doubt, it is tough to compact multiple sensors for capabilities into a thin, small and lightweight device. The addition of new functionality drags a challenge of power management.

Ways to overcome efficiency issues include:

  • By transferring data wirelessly by using LoRa, NB-IoT, etc.
  • Unloading high power functions to solutions like Bluetooth Low Energy (BLE).
  • Selecting an effective microcontroller (MCU) for power management purposes to reduce power consumption – especially when the device is not in use.
  • Utilizing pin-type charging or wireless charging rather than a USB plug-in connection.
  • Improving overall sensor technology.

Wireless power is becoming part of a multifaceted world of small things. Designers demand a highly integrated semiconductor solution with minimum loss rates, robust performance, and outstanding linearity.

Boosting Battery Technology

Battery life is the most significant barrier to the growth of wearable tech today. Smart wearable devices need efficacious power management to run many various functionalities at once. Customers demand batteries that last for a long time and are easy to recharge. Most wearables have lithium-ion (Li-ion) or Lithium-ion polymer (Li-poly) batteries; these conventional batteries only fit basic on-functionality wearables with simple sensors and low power capabilities. They are unable to keep up with the demand of adding more functionality to a single device.

In the end, it’s the solution that is evaluated no matter which battery is installed in it. Semiconductor companies are endeavouring to address this need for new battery alternatives by designing battery management technologies, especially for wearables, instead of new battery technology.

What About Security?

Tracking health and location details, collecting personal and contactless payment information are some of the uses of wearables in daily life. Wearables are immensely collecting sensitive user data, causing security issues to the forefront, especially IoT security.

As per the report shared by Nokia’s Threat Intelligence, the percentage of IoT infections increased by 100%in 2020 and IoT devices make up 32.7% of the total infected devices now.

Wearables are an extension of the user’s smartphone; both devices create a significant security risk for the customer and connected wireless network if not secured properly. If a wearable or mobile phone is connected to a public network, it could be at high risk of valuable information piracy if the security infrastructure is not updated. It could be a great chance for hackers.  

Currently, there is not enough space to improve security measures in wearables due to their small form factor. However, manufacturers are adding two-factor authentication, facial recognition, active sensing, and fingerprint sensing to shield wearables from end to end thoroughly to maintain security. 

Safe, guarded, and efficient high-value semiconductor components will support IoT in the connected world.

IoT Connectivity Future

Wearables will speed up the merge of the digital and physical world. PwC highlights that wearable technology has just started influencing enterprises; in the coming future, semiconductor companies will lead this enterprise charge by delivering a better and high-value semiconductor for the fast-growing IoT application. With the availability and integration of more intelligent technology like artificial intelligence, connected devices will become more automatic, providing a world where our devices take better care of us.